中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/6234
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 78937/78937 (100%)
造訪人次 : 39817367      線上人數 : 1243
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/6234


    題名: 二氧化鈦奈米管於染料敏化太陽能電池之探討
    作者: 呂怡萱;I-Hsuan Lu
    貢獻者: 化學研究所
    日期: 2006-06-30
    上傳時間: 2009-09-22 10:16:07 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 本研究主要目的為探討使用二氧化鈦奈米管應用於薄膜電極對於染料敏化太陽能電池效能的影響且對此議題建立研究方法。於此提出一簡便、低製備成本且具有高產率、均一性及熱穩定性佳之二氧化鈦奈米管的製作方式,其可直接採用商業化的二氧化鈦顆粒(微米級)於強鹼的環境下經由迴流合成的方式製備出二氧化鈦奈米管。 由XRD、SEM及TEM的鑑定可知二氧化鈦奈米管在450℃煅燒過後的表面型態不會有所改變亦維持中空管狀結構,且為銳鈦礦的晶相,亦形成有利於工作電極之狀態。然而,經由IR、XPS、UV-vis及ASAP的分析得知二氧化鈦奈米管表面具有較多的OH官能基、高比表面積及高孔隙度的特性,使得二氧化鈦奈米管上可吸附染料分子的數量增加。且由XPS檢測染料吸附於二氧化鈦表面後之束縛能,可知染料分子與二氧化鈦奈米管表面產生化學吸附,能夠有利於染料的激發電子轉移至二氧化鈦導帶,以產生較大的電流值(Isc)達25mA。 奈米級的電極材料容易因為表面電荷作用而造成聚集的情況產生,因此使用硝酸水溶液對二氧化鈦奈米管表面進行修飾以增加奈米管間的靜電作用力,使得材料在鍍液中的分散效果較佳,有利於得一表面較為平整的薄膜電極,但因薄膜電極的孔徑減小,造成電解質於薄膜內部擴散不易而無法使電流值有顯著的提升,僅可達7mA。 在元件方面,主要比較二氧化鈦奈米管與一般常用的Degussa P25奈米顆粒為主的薄膜電極。由實驗結果顯示,可知經元件設計改良過後的測試條件下,使用二氧化鈦奈米管取代Degussa P25的染料敏化太陽能電池之光電轉換效率最佳可達到6.58%。 The study is mainly to discuss the effects of the titanium dioxide nanotube(TiNT) applied in thin film electrode on the performance of the dye-sensitized solar cell and to set up a research method for the study. The method of producing the TiNT is within the simple way, low fabrication cost, uniformly size, and highly thermal stable. Moreover, the yield is higher than the previous art. The titanium dioxide nanotube(TiNT) can be directly fabricated from commercial titanium dioxide particle(micro-level) under the strong base condition via reflux reaction. After being calcined at 450℃, by XRD, SEM, and TEM images , the TiNT surface morphology would not be changed and still keep anatase phase, which is favorable to the performance of work electrode. However, many hydroxyl groups on the TiNT surface, high surface area and high porosity characteristic be able to increase the amount of adsorbed dye molecules on the TiNT, by IR, XPS, UV-vis and ASAP. From XPS, it is clear to see that the excited electron of dye from bipyridyl ring transfers to the TiO2 conduction band, producing great magnitude of short circuit current to reach 25mA. The electrode material in the Nano-scale makes it easier to create the accumulation due to the surface charge interaction; on the basis of electrostatic force, HNO3 solution is used to modify the TiNT to enhance dispersion. Hence, the electrode material causes better dispersion in TiO2 paste and advantageous to form a smoother thin film electrode. Because of the small pore size in thin film electrode, the electrolyte becomes hard to diffuse into the interior of thin film, and in addition, it’s unable to enhance the short circuit current. It only may reach 7mA. In the devices, when we compared the thin film electrode composed of the TiNT to the Degussa P25-used one, the experiment data demonstrated that TiNT-used device has the best efficiency to achieve 6.58%.
    顯示於類別:[化學研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明