English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 78818/78818 (100%)
造訪人次 : 34475801      線上人數 : 727
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/62367


    題名: 新穎有機及含碳烯有機金屬光敏染料之研發;Discovery of Novel Organic and Carbene-Based Organometallic Photosensitizers
    作者: 李文仁
    貢獻者: 國立中央大學化學系
    關鍵詞: 化學;能源工程;光電工程
    日期: 2012-12-01
    上傳時間: 2014-03-17 11:31:12 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 研究期間:10108~10207;Increasing energy demands and concerns over global warming have led to a greater focus on renewable energy sources in recent years. Dye-sensitized solar cells (DSSCs) have a significant potential to be used as low-cost photovoltaic devices for light to electricity conversion. Gratzel and co-workers investigated ruthenium(II) polypyridyl complexes such as N3, N719 and Black dye exhibiting highly efficient light harvesting properties. Many researchers also explored inexpensive metal free organic sensitizers with different electron donor and acceptor systems having high molar extension coefficient. Among dyes with different strong donating groups, cynoacrylic acid as an electron acceptor showed excellent photovoltaic properties. Recently, worldwide researchers geared their attention to further improve the photoelectric conversion efficiency of sensitizers. Most modifications were carried out using various conjugate substituents on ancillary ligand of ruthenium(II) polypyridyl complexes or employing different donor and acceptor groups in organic dyes. The main objective of this research proposal is to develop stable and highly efficient sensitizer dyes for DSSC applications. Specific aims are: A. Rational design and synthesis of N-heterocyclic carbene (NHC) pyridine-based ruthenium(II) complexes: 1. To apply present, and also formulate new methodologies of synthesis to prepare proposed NHC pyridine-based ruthenium(II) complexes. 2. To identify the critical structural requirements of NHC pyridine-based ruthenium(II) complexes and to achieve the desired power conversion efficiency through structure-function analysis. 3. To generate several stable and highly efficient NHC pyridine-based ruthenium(II) complexes for dye-sensitized solar cell applications. B. Photoelectric conversion efficiency evaluation of various organic dyes: 1. To prepare a new generation of organic dyes with conformational constrain around the cynoacrylic acid moiety (acceptor group). 2. To evaluate the power conversion efficiency of the constrained dyes and correlate their efficiencies with the corresponding geometry in order to design more efficient cynoacrylic acid sensitizers. 3. To explore several new organic sensitizers with different donor and acceptor systems or develop dyes with other acceptor group and study the correlation between device performances with structural modifications. C. Discovery of novel ruthenium free organic metal-hybrid sensitizers: 1. To design and synthesize various ruthenium free organic metal-hybrid sensitizers using combinatorial approach. 2. To evaluate the photovoltaic properties of the identified hits. 3. To optimize and fine tune device conditions between dyes and the semiconductor films with a different mesoscopic oxides’ layer.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[化學學系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML362檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明