Abstract: | 研究期間:10208~10307;Mesoporous materials have received much attention over the last two decades due to their unique characteristics of high surface areas, large pore volumes and uniform pore sizes, and have been developed for variety of applications such as adsorption, catalysis, energy storage etc. Moreover, recent reports had shown that mesoporous silica, e.g. SBA-15, is with low cytotoxicity so as to be with good potent for application in biosystems. In addition, another material of microporous zeolitic imidazolate frameworks(ZIFs)- a new class of Metal Organic Frameworks (MOFs)-have also attracted considerable attention due to owing large internal surface areas, uniform channels, (sub) nanometer-sized cavities, thermal stability, and chemical tailorability. Thus, those materials mentioned above are good candidates for gene, drugs delivery or diagnosis application in clinic trials. However, effective design of a silica material for efficiently cooperation with cofactors, metal ions or gene, in the further application, e.g. Magnetic resonance imaging (MRI) or gene delivery, is still existing challenges. RNA interference (RNAi) is a cellular process whereby the silencing of a particular gene is mediated by short RNAs. Thereby, the development of new therapeutics that attempt to engage a RNAi pathway has opened a new area of drug discovery and development. Meanwhile, Magnetic resonance imaging (MRI), one of the most important noninvasive imaging techniques, has been widely used for clinical diagnosis and biomedical research. However, its sensitivity is relatively low for cellular level applications. In this project will be focusing on development of better gene delivery system for RNAi by the use of nanoscale mesoporous silica and microporous ZIFs. Additionally, our lab will also be emphasizing the development of a series of annulated nanosize mesoporous and microporous materials which are able to strongly chelate with lanthanide ions. Hence, those novel designed nanoparticles are with mutilfunctionalities in therapeutic (RNAi) and diagnostic (MRI) roles so as to be more interest in clinical applications. |