English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 78818/78818 (100%)
造訪人次 : 34653083      線上人數 : 742
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/62424


    題名: 太空電漿環境中電流片與非線性波物理之研究;Physics of Current Sheet and Nonlinear Waves in Space Plasma Environment
    作者: 郝玲妮
    貢獻者: 國立中央大學太空科學研究所
    關鍵詞: 物理;大氣科學
    日期: 2012-12-01
    上傳時間: 2014-03-17 11:32:26 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 研究期間:10108~10207;Earth’s space environment above 1000 km from the Earth to the edge of the solar system is permeated nearly with collisionless ionized gas – plasma which consists of primarily electrons and ions (protons etc.). One of the major characteristics associated with collisionless space plasmas is its extremely low number density which could not possibly be produced in the laboratory. In addition space plasma is intrinsically magnetized that the generation and evolution of large scale magnetic field is of great interest to space scientists. Due to the lack of collisions many interesting plasma phenomena with wide range of temporal and spatial scales such as the formation of thin current sheets and nonlinear plasma waves etc. may develop which can only be observed by in-situ measurement of spacecraft. Studies of collisionless space plasmas are not only of fundamental and challenging research but also have important applications. Indeed the topics of how the solar wind particles at the magnetopause current may find ways to enter into the magnetosphere, then be stored in the magnetotail in the form of thin current and transported to the near-Earth space environment are one of the major issues of space plasma physics as well as space weather. Under the support of National Science Council grants we have made several important discoveries and contributions to space plasma physics in the past few years, including nonthermal plasma physics, the structure and dynamics of thin current sheet as well as nonlinear plasma waves and instabilities etc. The proposed three-year research project will focus on two major important problems of space plasma physics by utilizing the magntohydrodynamic (MHD) and kinetic theories along with modeling、 numerical simulations as well as data analyses etc. (1) The physics of large-scale magnetized plasma current sheet with the applications to magnetopause and magnetotail currents、solar plasma and interplanetary space etc. In particular, we will study the propagation of low-frequency plasma wave in thin current sheet and analyze its stability due to the nonthermal effect as well as study the magnetic reconnection based on MHD and particle simulations. The structure and dynamics of magnetopause currents in terms of magnetic reconnection will also be studied systematically by analyzing the satellite data. (2) The physics of nonlinear plasma waves with the applications to the solar wind、interplanetary space and magnetosphere etc. The structure、formation and evolution of solitary waves、magnetic holes、shock waves and magnetic flux tubes/ropes etc. will be studied based on fluid and kinetic theories as well as numerical simulations.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[太空科學研究所 ] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML330檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明