中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/62531
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41647016      Online Users : 2319
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/62531


    Title: 以層流剪力系統探討菸鹼與血管內皮細胞病變之相關聯性;Study of the Correlation between Nicotine and Vascular Endothelial Cell Lesions Using Laminar Shear Stress System
    Authors: 李宇翔;何豐名
    Contributors: 國立中央大學生物醫學工程研究所
    Keywords: 醫學工程
    Date: 2012-12-01
    Issue Date: 2014-03-17 11:49:58 (UTC+8)
    Publisher: 行政院國家科學委員會
    Abstract: 研究期間:10108~10207;Background: According to WHO statistics, approximately 500 million people die of smoking-related diseases each year worldwide. In Taiwan, nowadays there are about 450 million smokers, and more than 18,000 people die each year due to smoking-related diseases, that means one is killed by cigarette smoking every 20 minutes. As compared with advanced countries, the number of Taiwanese male smoker is 1.5 and 1.8-fold higher than US and Canada, respectively, and the smoker age dramatically decreases over last decade. Therefore, tobacco can be foreseen as a top threat for public health. In addition to known pulmonary diseases, the chemicals generated by cigarette smoking can enter systemic circulation through capillaries, leading physiological lesions and/or complicated cardiovascular diseases. Although vascular disease is highly associated with smoking, the mechanisms by which cigarette smoking contributes to vascular disease are not completely understood as yet, because tobacco contain various constituents that will widely affect physiological systems including nervous, endocrine, metabolic, circulatory, and many other organs. Presently it has been demonstrated that the tobacco components do impact vascular endothelial cell (EC) growth. However, most of studies were conducted by assays with static cell culture, which can not truly reflect the interactions between ECs and cigarette smoking since (1) human vascular ECs are actually growing with blood flow-induced shear stress that plays a crucial role in regulating gene expression of ECs; (2) in blood vessel, the interactions between ECs and smooth muscle cells (SMCs) will be impacted by environment condition, hence dramatically affect EC performances accordingly. These interactions in response to surroundings should not be ignored when investigating the correlations between cigarette smoking and vascular lesions. Current research efforts still can not clearly present how the human vascular cells/tissues are adversely impacted by cigarette smoking due to above limitations. Method & Features: Among more than 4000 compounds in cigarette smoking, we will select the most important ingredient; nicotine, as the target chemical for study of smoking-induced vascular lesions. To overcome aforementioned inadequacies in the existing approaches, we will (1) apply laminar shear stress onto Human umbilical vein endothelial cells (HUVECs) surface to mimic the actual in vivo growing environment of ECs, and (2) evaluate how nicotine affects interactions between HUVECs and SMCs through various cellular & molecular assays. Results of this study will truly exhibit how the nicotine impacts vascular ECs, and could be further investigated for mechanism study and/or curing method development. Advantages: The principle investigator (PI; Y-H Lee) of the project has robust research background in the fields of bioengineering & cell/molecule biology, and has hands-on experience of experimental techniques for this project. The Co-PI, F-M Ho, is a cardiology physician and also a senior biomedical researcher who is with strong professions in clinical cardiovascular biology, being able to provide professional advice and hardware supports in this study. Hence this partnership is certainly qualified to conduct this research project. Specific Aims: The following tasks will be performed orderly in the next two years:  The 1st Year 1. To assemble, set up, and test multi-components shear stress-generated laminar flow system. 2. To analyze how HUVECs react with shear stress in the presence of nicotine. 3. To evaluate nicotine-induced inflammation in HUVECs using blood cells adhesion test.  The 2nd Year. Under the impact of shear stress: 1. To investigate molecular expressions of various atherosclerosis-related mRNA/proteins in nicotine-exposure HUVECs. 2. To study how the nicotine changes the interactions between HUVECs and SMCs.
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[Institute of Biomedical Engineering] Research Project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML501View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明