研究期間:10108~10207;This is a proposal entitled of “Efficiency improvement of micromorphous silicon thin-film solar cell using optical bandgap engineering” regarding the enhancement of optical efficiency of micromorphous silicon thin-film solar cells using optical bandgap engineering. The fabrication method of the solar cell is based on PECVD or ECRCVD. The photonic properties of the solar cell such as optical bandgap, absorption coefficient, and defect density will be measured using constant photocurrent method. The layer design of the solar cell will be established under the theory of optical bandgap engineering. The optimum single junction micromorphous silicon thin-film solar cell can be non-constant bandgap profile simulated using AMPS, PC-1D, FDTD and Essential Macleod based on the stated absorption model. Finally, the optimum single junction micromorphous silicon thin-film solar cell will be fabricated and analysis. The testing results will be compared with the designed ones. To achieve the research object, there are four parts of the research methods in the two years period: the fabrication of the micromorphous silicon thin films with different crystallization ratio; measurement of the photonic properties of the micromorphous silicon thin films; design of the thin-film solar cell using optical bandgap engineering; and the fabrication and analysis of the optimum single junction micromorphous silicon thin-film solar cell. To combine all of the improvement methods, the micromorphous silicon thin-film solar cells will be optimized as a high efficiency solar cell.