中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/63127
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78728/78728 (100%)
Visitors : 33351258      Online Users : 513
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/63127


    Title: 以數位訊號處理器為基礎之錯誤容忍控制六相永磁同步馬達驅動系統;DSP-Based Fault Tolerant Control of Six-Phase Permanent Magnet Synchronous Motor Drive System
    Authors: 林法正
    Contributors: 國立中央大學電機工程學系
    Keywords: 電子電機工程
    Date: 2013-12-01
    Issue Date: 2014-03-17 14:19:38 (UTC+8)
    Publisher: 行政院國家科學委員會
    Abstract: 研究期間:10208~10307;The purpose of this project is to develop a digital signal processor (DSP)-based fault tolerant control of six-phase permanent magnet synchronous motor (PMSM) drive system. This system is suitable for industrial applications such as mechanical tools, aerospace technology, vehicle technology, compressors, robotic arms, robots, electric vehicles and some specific applications. In the first year of this project, the six-phase PMSM is designed and the dynamic model of six-phase PMSM is analyzed and derived. Moreover, the DSP-based motor drive and control system is developed to actuate the six-phase PMSM. The six-phase PMSM drive system is highly nonlinear and is very sensitive to parameter variations and external disturbance. When the motor winding or the respective inverter is broken, the torque fluctuation will appear due to unbalanced current and the motor operates under non-smooth situation even results in much serious broken. Therefore, the stability and the fault tolerant control are the most important issues of the six-phase PMSM drive and control system. For this reason, in the second year of this project, a Takagi-Sugeno-Kang type fuzzy neural network with asymmetric membership function (ATSKFNN) controller is developed and the fault detection and operating decision method is designed to achieve fault tolerant control. Furthermore, an intelligent complementary sliding-mode controller (ICSMC), which combines complementary sliding-mode control and Takagi-Sugeno-Kang type fuzzy neural network with asymmetric membership function, are developed to improve the control performance and to achieve the requirements of stability of fault tolerant control of six-phase PMSM drive system in the last year of this project. A TMS320F28335 DSP made by Texas Instruments (TI) is the core of the proposed control system. Moreover, the proposed control algorithms are realized in the DSP using the “C” language. The DSP extension board reads the rotor position, motor speed and six-phase currents from the sensors using encoder interface circuit and analog to digital converters (ADCs). Furthermore, the resulted pulse width modulation (PWM) signals are sent to control the IGBT-based inverter and actuate the six-phase PMSM according to the fault detection and operating decision method and field-oriented control. Therefore, the DSP-based fault tolerant control of the six-phase PMSM drive system can be achieved. In addition, the DSP-based fault tolerant control of the six-phase PMSM drive system with guaranteed stability can be used as the prototype for commercial realization.
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[Department of Electrical Engineering] Research Project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML402View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明