English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42119168      線上人數 : 1294
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    NCU Institutional Repository > 理學院 > 數學系 > 研究計畫 >  Item 987654321/63178


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/63178


    題名: 隨機熱傳導方程式之研究;A Study on Stochastic Heat Equations
    作者: 須上苑
    貢獻者: 國立中央大學數學系
    關鍵詞: 數學
    日期: 2012-12-01
    上傳時間: 2014-03-17 14:20:57 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 研究期間:10111~10207;There are two common approaches to stochastic partial differential equations.One is infinitely dimensional approach, the other one invented by J. Walsh is more probabilistic. We are using Walsh’s approach and consider stochastic heat equations (SHEs) which is a family of heat equations with added Gaussian noises. Since rough noises have been added, the behaviors of solutions are different from the [deterministic] heat equations (HEs). For example, in dimension one with constant initial data, the solutions to SHEs have fluctuations. Our plan is to understand the behaviors of the solutions, such as intermittency, fractal-like exceedance sets. Moreover, by observation of the solutions in mild form, intuitively the solutions can be locally approximated by the solutions to stochastic differential equations. We are interested in giving a rigorous proof of it. When the initial data vanishes at infinity, the solutions to HEs go to infinity exponentially; in the case of SHEs, we like to know how fast the solutions to SHEs dissipate.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[數學系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML312檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明