English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62278/62278 (100%)
造訪人次 : 17750897      線上人數 : 174
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋

    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/63198

    題名: 應用新型多模態壓流分析於探究多重時間尺度下腦血流自我調控之動態複雜機制---建立運用穿顱超音波於同步量測腦血流自我調控機制之綜合分析;Probing the Complex Underlying Mechanisms over Multiple Time-Scale in Human Cerebral Autoregulation by Novel Multimodal Pressure-Flow Method ---A Comprehensive Analysis of Cerebral Autoreglation by Synchronized Trancranial Color Doppler
    作者: 羅孟宗;楊智傑;許立奇
    貢獻者: 國立中央大學數據分析方法研究中心
    關鍵詞: 醫學工程;資訊科學;軟體
    日期: 2012-12-01
    上傳時間: 2014-03-17 14:21:24 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 研究期間:10108~10207;Cerebral autoregulatory mechanisms are engaged to compensate for metabolic demands and perfusion pressure variations under physiologic and pathologic conditions. Dynamic autoregulation reflects the ability of the cerebral microvasculature to control perfusion by adjusting the small-vessel resistances in response to beat-to-beat blood pressure (BP) fluctuations by involving complex interactions of myogenic and neurogenic regulations. Reliable and noninvasive assessment of cerebral autoregulation (CA) is a major challenge in medical diagnosis. Conventional approaches typically model cerebral regulation using mathematical models of a linear and time-invariant system to simulate the dynamics of BP as an input to the system, and cerebral blood flow as output. A transfer function is typically used to explore the relationship between BP and cerebral blood flow velocity (BFV) by calculating gain and phase shift between the BP and BFV power spectra. This Fourier transform based approach, however, assumed that signals are composed of superimposed sinusoidal oscillations of constant amplitude and period at a pre-determined frequency range. This assumption puts an unavoidable limitation on the reliability and application of the method, because the recorded BP and BFV signals from clinical settings are often nonstationary and are modulated by nonlinearly interacting processes at multiple time-scales corresponding to the beat-to-beat systolic pressure, respiration, spontaneous BP fluctuations, and those induced by interventions. Here, an advanced nonlinear decomposition algorithm-Hilbert Huang transform (HHT) will be incorporate into our newly proposed multimodel pressure flow (MMPF) analysis. This improved algorithm can illustrates the relationship between BP and BFV in more details over several time scales, and demonstrate better performances for certain specific types of nonstationarities. In this project, we will further improve MMPF and apply it to 1) qualitatively and quantitatively evaluate the changes of CA in patients with carotid or vertebrovascular artery stenosis in multiple time scales and their response to stent implantation.2) find the possible parameters to describe the dysfunction of CA in patients with stroke and assess the relationships between stroke prognosis and the newly derived parameters. 3) probe the underlying mechanisms over different time scales by sequential tasks in normal control subjects and build up a realistic model of human cerebral autoregulation based on the results. MMPF analysis is a promising method in analyzing the nonlinear and nonstationary processes of biological signals. In combination of three synchronized BFV signals from different region of cerebrum and noninvasive blood pressure monitor, the spatial and temporal changes of cerebral autoregulation in different diseases and physiological conditions can be noninvasively explored in a more comprehensive way.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[數據分析方法研究中心 ] 研究計畫


    檔案 描述 大小格式瀏覽次數


    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋  - 隱私權政策聲明