English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41625446      線上人數 : 1961
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/63360


    題名: 污泥及灰渣類廢棄物合成中孔徑多孔吸附材料之開發與應用研究;Development and Application of Mesoporous Aluminosilicate Adsorbents from Waste Sludge and Incinerator Residues
    作者: 王鯤生
    貢獻者: 國立中央大學環境工程研究所
    關鍵詞: 材料科技;環境科學
    日期: 2012-12-01
    上傳時間: 2014-03-17 14:28:09 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 研究期間:10108~10207;Increasing generation of various sludges, sediments, and inorganic residues such as municipal/industrial incinerator ashes is posing an environmental problem facing society. Traditional treatment of such waste streams includes recycling as roadbed fill, artificial aggregates for concrete, replacements for par tof the raw meal for producing eco-cement, all targeting a recycling-benificial use of the residues to set-off part of the resources depletion problem. The traditional technologies for recycling the above sludges and residues into constructional materials is well developed and have long been practiced; the products, however, have less performance and lack of added value. Therefore, there is possibility to develop novel mesoporous aluminosilicate adsorbents from waste sludge and incinerator residues, that is functional, environmental-friendly, low-cost, and with high added values. The inorganic residues, especially the water-treatment sludge ash, are essentially composed of SiO2, Al2O3 . In addition, most of the mesoporous molecular sieves having been developed thus far are all of aluminosilicates or silicates. In fact, the mesoporous materials can be synthesized using a variety of silicate and aluminate precursors such as fume silica, sodium silicate, tetraethoxysilane, colloidal silica, catapal alumina, and sodium aluminate. However, they are all suffering form high producing costs. Therefore, if waste-derived silica and aluminum sources are used as precursors, this may provide an excellent opportunity to prepare mesoporous aluminosilicate adsorbents economically. This study try to develop a novel synthesis approach for preparing cost-efficient mesoporous aluminosilicate adsorbents from sludge and incinerator residues. The research work is devied into two phases: First year: Development and Application of Mesoporous Aluminosilicate Adsorbents from Waste Sludge and Incinerator Residues(l/2)--Synthesis and Characterization of mesoporous aluminosilicate. Second year: Development and Application of Mesoporous Aluminosilicate Adsorbents from Waste Sludge and Incinerator Residues (2/2)--Surface modification of mesoporous aluminosilicate and its application to toxic oxyanions adsorption. The first year: the study focused on the preparation of a mesoporous aluminosilicate molecular sieves (i.e., Al-MCM-41and Al-MCM-48). The mesoporous molecular sieves are formed by fusion with NaOH with Si and Al species extracted from sludges and incinerator residues as precursors, followed by hydrothermal reaction. The solid residue arising from silica extraction is also simultaneously converted into zeolite adsorbents. The processes conditions and the characteristics of the mesoporous aluminosilicate generated are studied. The second year: based on the results from the first year study, the surface characteristics is modified with organic functional groups such as amino group, to facilitate the removal of arsenate and chromate from wastewater. Effects of modifications on both the pore structure and surface chemistry are studied. The adsorption by the functionalized mesoporous aluminosilicate adsorbents in related to target toxic oxyanions in wastewater are characterized. The preparation of mesoporous aluminosilicate adsorbents using sludge and incinerator residues as starting materials is a novel process, not only cost-effective but also recycling-beneficial. And the wastes-synthesized mesoporous aluminosilicate adsorbents has outperforming characteristics in adsorption and a wide range of potential applications. This study expects the results can be applied to the wastewater treatment process in industries from which sludges can be recycled and synthesized into a high-efficient adsorbent. And again, these functional adsorbents can be applied in the air and water treatment units. This preparation of the functional environmental-purifying composite from waste sludges and incinerator ashes is a novel technology not only recycling oriented, cost-effective but also environmental-benificial.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[環境工程研究所 ] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML346檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明