實驗室設計了一個D-B-A的三元件系統(three-component system)來達成遠距離調控氫鍵強度的目的。所謂的三元件系統包含了氫鍵鍵結中心(hydrogen-bonding center)、反應中心(reaction center)和連結前面兩者的π共軛架橋(π-conjugated bridge),當對反應中心進行質子化、金屬化、氧化等作用時,可誘發三元件系統的分子內電荷轉移,因而改變在遠端氫鍵的鍵結能力。本論文在三元件系統的架構之下分為兩個研究主題,第一部份我們研究在不同的金屬化反應的作用下,對於三元件系統調控氫鍵之影響,我們討論了使用pyridine與phosphinine配位基作為反應中心的雙芽基金屬化系統,以及拉電子基對其之影響,最後我們也研究了三芽基金屬化系統。第二部份我們設計了一個雙方向氫鍵調控系統,是藉著在反應中心TTF(tetrathiafulvalene)的反式位向上連接出兩條相異的π共軛架橋的方式來達成兩個方向的氫鍵鍵結中心在氫鍵鍵能的表現上有不同強度的呈現,並藉著替換不同的π共軛架橋的方式,讓整個雙方向氫鍵調控系統在不同的氧化還原狀態下,氫鍵鍵能強端與弱端的順序能夠互換。 A three-component system (D-B-A system), consisting of a hydrogen bonding site (electron donor), a conjugated bridge and a reaction center (electron acceptor), is used to modulate the strength of hydrogen bonding. By altering the charge state of the reaction center, intramolecular charge transfer can be triggered and thus the binding ability of the hydrogen bonding site is modulated. Under the three-component system framework, we have studied two topics. The first one is the effects of metalation on the three-component systems. Both bidentate and tridentate metalation systems, which are constituted by pyridine- and phosphinine-containing ligands, have been examined. The second topic is to design a system in which two different types of π-conjugated bridges are attached to a TTF reaction center to achieve two-way remote control of the strengths of hydrogen bonds. Depending on the oxidation state of TTF, the strong hydrogen bonding site and the weak hydrogen bonding site can be exchanged.