English  |  正體中文  |  简体中文  |  Items with full text/Total items : 73032/73032 (100%)
Visitors : 23358574      Online Users : 517
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/63557

    Title: 伽羅瓦理論;Galois Theories
    Authors: 曾宇揚;Tseng,Yu-yang
    Contributors: 數學系
    Keywords: 伽羅瓦理論;伽羅瓦範疇;亞歷山大·格羅滕迪克;Galois theory;Galois category;Grothendieck
    Date: 2014-01-28
    Issue Date: 2014-04-02 15:50:24 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在第二章,我重新整理了Lenstra的筆記和Grothendieck的SGA I的5.4章節。基本上可以分成兩個部分: 第一個部分根據Lenstra筆記的第三章。有一些比較省略的步驟,還有一些步驟留作習題,我把這些地方補上並想辦法寫得更流暢些。第二個部分根據Grothendieck的SGA I的5.4章節,用pro-objects的技術,首次出現是在Seminaire Bourbaki一篇Grothendieck的文章裡。我從原來文章裡簡短的描述中,給了定理4.1一個詳細的證明。; In chapter 2, I reorganize some part of \cite{Le08} and \cite{SGA1}. Basically it can be divided into two parts: the first part follows \cite{Le08} Chapter 3. Some steps are written a bit roughly and some steps are exercises in original texts, I just make them more fluent, and write down the exercises; The second part follows \cite{SGA1} Section 5.4, using the technique so called pro-objects, first introduced by Grothendieck in his article in Seminaire Bourbaki \cite{Gr59}. I give a proof of \cite{SGA1} Expos\'{e} V. Theorem 4.1, following the brief sketch in the original article.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明