English  |  正體中文  |  简体中文  |  Items with full text/Total items : 74010/74010 (100%)
Visitors : 24681303      Online Users : 227
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/63564

    Title: 超塑性鋁合金5083用於機翼前緣整流罩之研究;Research In Superplastic Aluminum Alloy 5083 Applied To Wing's Leading Edge Fairing Covers
    Authors: 沈義峯;Shen,Yi-Feng
    Contributors: 機械工程學系在職專班
    Keywords: 5083鋁合金;超塑成形;空孔;5083 Aluminum Alloy;Superplastic Forming;Cavity
    Date: 2014-01-13
    Issue Date: 2014-04-02 15:52:41 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究是運用超塑成形技術來進行中型民航客機波音737 機翼前緣整流罩的製作,研究探討利用不同的氣壓時程來進行吹製(如一般超塑成形、快速超塑成形與低壓長時間超塑成形)並觀察、探討超塑成形後超塑性5083材料的微觀組織變化。
    研究所使用的材料為超塑性鋁合金5083 此超塑性材料的起始晶粒屬於細晶組織,在長時間高溫環境下細晶組織狀態會轉變成粗晶組織。一般而言材料在超塑成形製程中的變形機制是由於晶界滑移所造成的塑性變形,然而晶界滑移到某一個程度就可能會產生空孔。
    探討三種不同的氣壓時程吹製出飛機前緣整流罩工件成品後進行空孔率分析與晶粒粗化現象觀察,可以了解工件塑性加工後對微觀組織的影響,最後再考慮飛機前緣整流罩成形工件厚度分佈,找出絕佳的超塑成形製程條件。; The purpose of this research is to evaluate the use of superplastic forming technology, in the production of the mid-sized Boeing 737 airliners leading edge fairing, as part of the wing's construction. I will demonstrate the implementation of different air pressures used during the forming process of these superplastics (such as general superplastic forming, rapid superplastic forming and low pressure superplastic forming over a long period of time).I will then observe the change in the microstructure of superplastic 5083 after superplastic forming processes due to the variation in conditions when forming.
    The material used for the research is superplastic aluminum alloy 5083 as the starting material. This superplastic has a fine grain structure. The fine grain structure will be converted into a coarse grain structure when exposed to a high-temperature environment over a long period of time. In general, during the forming process, the properties of the resultant molded materials grain structure is altered due to the plastic deformation caused by the materials grain boundary sliding when exposed to high temperatures. However, if the grain boundary slides to a certain degree, cavity can be generated within the material.
    By exploring the use of three different air pressures during the forming process of the aircrafts leading edge fairing construction, in conjunction to analysis of the resultant component, regarding grain coarsening phenomenon and void generation within the material, we are able to conduce valuable information, concerning the impact of the forming process on the materials microstructure. From this, it is then possible to deduce the perfect processing conditions for superplastic forming, whilst retaining continuity in the formed articles thickness distribution.
    Appears in Collections:[機械工程學系碩士在職專班 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明