積體式被動元件,因其具有微小化、低成本及降低研發時程等特點,於射頻前端模組整合應用有其優勢。本研究使用薄膜製程平台進行積體式被動元件的開發,以達成體積小及高性能的射頻被動元件為目標。 本論文首先提出一個建立薄膜積體式被動元件資料庫的標準流程,即先針對元件的高頻特性以等效電路進行元件之模型化,再經由商用的數值電磁軟體輔助設計、製程實現與量測驗證,建立被動元件資料庫。且由設計、製程實現與量測驗證的流程中建立薄膜積體式被動元件分析設計技術,建立射頻被動元件之等效電路模型,並進行製程變異所造成之電性公差分析,以供設計者快速且精確的使用;亦提出數個低通濾波器設計實例,驗證所建立元件等效電路模型於射頻電路設計之可用性與模型之準確度。 本研究以此流程分別實現應用於750MHz之CATV 及2.4 GHz 之WiFi 模組中的低通濾波器,其元件植入損耗分別為1.9dB及0.43dB,並有優良的截止帶抑制能力。 並利用薄膜製程的優點,與同類商用產品尺寸能有效減少至0.8 × 0.8 mm2 與1.4 × 4.3 mm2。本論文中提出的低通濾波器且有簡單清楚的設計流程,並針對實際實現電路的各項設計考量均詳細加以研究,同時也為未來進一步的改良提供更多的設計經驗。 ;Integrated passive device (IPD) technology has been developed and adopted to achieve small form factor size, low cost, and less development time in radio front-end transceiver module application. In this study, thin-film integrated passive device (TF-IPD) technology using glass wafer is proposed to enable compact and high performance circuit components for RF application. First, the passive element library including R, L and C, and the RF characterization procedure was established. These library elements are modeled using equivalent circuits and investigated using full-wave EM simulation with experimental verification. Good agreement between simulated and measured results validates our design process. We also analyzed the process variation effect so as to achieve design optimization and fast design cycle-time. Specifically, this thesis will present a good correlation between measured and simulated results, and demonstrates the effectiveness of EM simulation in the RF filter design so as to enable faster time to market for wireless communication application. Harmonic-rejection low-pass filters have been designed and fabricated in TF-IPD technology for 750MHz CATV and 2.4GHz Wi-Fi applications. They exhibit in-band insertion loss of <1.9dB and <0.43dB, good harmonic rejections of >30dB, and compact die sizes of 0.8×0.8×0.2 mm3 and of 1.4×4.3×0.2 mm3, respectively.