 English  |  正體中文  |  简体中文  |  Items with full text/Total items : 67621/67621 (100%) Visitors : 23102943      Online Users : 123
 Scope All of NCUIR 理學院    數學研究所       --博碩士論文 Tips: please add "double quotation mark" for query phrases to get precise resultsplease goto advance search for comprehansive author search Adv. Search
 Home ‧ Login ‧ Upload ‧ Help ‧ About ‧ Administer NCU Institutional Repository > 理學院 > 數學研究所 > 博碩士論文 >  Item 987654321/63709

 Please use this identifier to cite or link to this item: `http://ir.lib.ncu.edu.tw/handle/987654321/63709`

 Title: 可分解友矩陣之研究;A Study on Reducible Companion Matrices Authors: 孫梅珊;Sun,Mei-San Contributors: 數學研究所 Keywords: 可分解之友矩陣;numerical range;reducible companion matrices Date: 2006-06-29 Issue Date: 2014-05-08 15:26:34 (UTC+8) Publisher: 國立中央大學 Abstract: 本論文探討「可分解友矩陣」的一些性質。我們證明若一個非么正友矩陣 A 可分解成A1 ⊕ A2，則 且。令*1 1 rank( ) 1 kI −AA =* =2 2 rank( ) 1 n k I AA − − { : rank( * )=1 and | | , ( )} n n Sα ≡ A∈M I−AA λ =α ∀λ ∈σ A，則相當於1 是屬於A k Sα 且2 是屬於A 1/n k S α− 。亦證明每一個屬於n Sα集合內的矩陣均具有循環、不可分解、且其數值域之邊界為一可微曲線。並證明下列敘述互為等價：(a) ；(b)；(c)1 W(A)=W(A)1 1) n 2 n1 W(J ) W(A − ⊆ W(A ) W(J ) − ⊆ 。;In this thesis, we study some properties of reducible companion matrices. We first prove that if a nonunitary reducible companion matrix A is unitarily equivalent to the direct sum A_1oplus A_2 on mathbb{C}^koplusmathbb{C}^{n-k} with sigma(A_1)={aom_n^{j_1},cdots,aom_n^{j_k}} and sigma(A_2)={(1/ ar{a})om_n^{j_{k+1}},cdots,(1/ ar{a})om_n^{j_n}},where |a|>1 and om_n denotes the nth primitive root of 1,then rank(I_k-A^{*}_1A_1)=rank(I_{n-k}-A^{*}_2A_2)=1. We denote mathcal{S}^{al}_nequiv{Ain M_n:rank(I_n-A^{*}A)=1 and |la|=al,forall: lainsigma(A)}, thus A_1 is in mathcal{S}^{al}_k and A_2 is in mathcal{S}^{1/al}_{n-k}. Next, we prove that every mathcal{S}^{al}_n-matrix is irreducible, cyclic, and the boundary of its numerical range is a differentiable curve.Furthermore, we show that the following statements are equivalent:(a) W(A)=W(A_1); (b)W(J_{n-1})subseteq W(A_1); (c)W(A_2)subseteq W(J_{n-1}). Appears in Collections: [數學研究所] 博碩士論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML147View/Open