English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65275/65275 (100%)
Visitors : 20951039      Online Users : 261
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/64371


    Title: 利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善定量降水即時預報:莫拉克颱風(2009);Improving QPN with an LETKF radar data assimilation system: Typhoon Morakot (2009)
    Authors: 蔡直謙;Tsai,Chih-Chien
    Contributors: 大氣物理研究所
    Keywords: 局地系集轉換卡爾曼濾波器;雷達;資料同化;定量降水即時預報;莫拉克颱風;local ensemble transform Kalman filter;radar;data assimilation;quantitative precipitation nowcasting;Typhoon Morakot
    Date: 2014-06-23
    Issue Date: 2014-08-11 18:12:21 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究建置一套都卜勒雷達資料同化系統,結合局地系集轉換卡爾曼濾波器與天氣研究預報模式,並針對在台灣中、南部造成降雨紀錄和嚴重災害的莫拉克颱風(2009)個案,進行觀測系統模擬實驗與真實觀測實驗,以評估此雷達資料同化系統對於定量降水即時預報的助益。而研究的最大意義,為在台灣地形複雜且四周海域缺乏觀測等不利預報的條件下,提供以雷達資料同化改善颱風降雨即時預報的有效方案。

    在觀測系統模擬實驗中,三維風場和雨水混合比為同化徑向風和回波之後改善最多的預報變數,可歸因於觀測算符內的直接關係。在降雨預報方面,雷達資料的正面影響可長達6小時。同化回波的改善主要在預報初期,同化徑向風的改善則較為延遲,而兩者皆同化的降雨預報表現最好。增加上游對流區域的觀測覆蓋量,亦可大幅提升降雨預報表現。另外,本研究針對颱風環流下所發展的對流雨帶,提出使用混合局地法進行雷達資料同化,以進一步改善降雨預報。

    在真實觀測實驗中,此雷達資料同化系統仍能有效改善定量降水即時預報。同化回波時須使用變數局地化法,只用來更新雨水混合比。使用觀測空間的統計方法,能診斷預報偏差和理想系集離散度。混合局地化法在真實觀測實驗的效益更加明顯,尤其能提升觀測資料稀疏或破碎處的風場準確度,進而改善降雨預報。;This study develops a Doppler radar data assimilation system, which couples the local ensemble transform Kalman filter with the Weather Research and Forecasting model. Its benefits to quantitative precipitation nowcasting (QPN) are evaluated with observing system simulation experiments (OSSEs) and real observation experiments on Typhoon Morakot (2009), which brought record-breaking rainfall and extensive damage to central and southern Taiwan. The purpose is to provide a useful plan of radar data assimilation for improving typhoon rainfall nowcasts in Taiwan, which are challenges due to complex terrain and the lack of in-situ observations over the surrounding sea.

    In the OSSEs, the assimilation of radial velocity and reflectivity improves the three-dimensional winds and rain-mixing ratio most significantly because of the direct relations in the observation operator. For QPN, the positive impact of radar data lasts for 6 hours; the performance responds to reflectivity assimilation more quickly than radial velocity assimilation while assimilating both is most recommended. Increasing the observation coverage over upstream convection areas also largely enhances the QPN performance. For multi-scale interactions, we propose a mixed localization method, which yields further improvement.

    Our system also improves QPN effectively with real observations. When real reflectivity data are assimilated, the variable localization method must be used to update only the rain mixing ratio. With observation-space statistics, the model bias and ideal ensemble spread can be diagnosed. The mixed localization method, which is more beneficial in the real case, enhances the accuracy of the wind field especially for the areas with sparse or discontinuous radar observations and also improves QPN.
    Appears in Collections:[大氣物理研究所 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML363View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明