English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42119257      線上人數 : 1305
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/65014


    題名: 微波水熱法製備金屬硫化物粉體及其光化學產氫研究;Microwave-assisted hydrothermal preparation of metal sulfide powder and photochemistry for hydrogen evolution
    作者: 黎閔智;Li,Min-chih
    貢獻者: 化學工程與材料工程學系
    關鍵詞: 微波輔助;金屬硫化物粉體;產氫;核殼結構;光化學;Microwave-assisted;Metal Sulfide Powder;Hydrogen evolution;Coreshell;Photochemistry
    日期: 2014-07-28
    上傳時間: 2014-10-15 14:38:06 (UTC+8)
    出版者: 國立中央大學
    摘要: 能源危機與環保問題為本世紀重要的挑戰,乾淨的氫能源成為取代石
    化燃料的最佳替代能源,使得發展光觸媒來分解水產氫的研究變得很重要,
    使用光觸媒有效利用太陽能分解水產氫,便是此研究的目標。
    實驗中使用的ZIS (ZnmIn2S3+m)可見光光觸媒,隨著溫度的上升有助於
    提升水分解效率,我們調整核殼結構(Coreshell)內部Nanoshell(Ag@Au)的
    吸收波段至紅外光,將太陽能轉換為熱能,形成光觸媒侷部加熱的效應,
    最高能有效提升光觸媒的產氫效率達74%。Nanoshell 是由銀與金奈米粒子
    所組成,在太陽光照射下其具有表面電漿共振效應,使用吸收波長在700
    nm 左右的Nanoshell 與光觸媒形成核殼結構後,表面電漿共振能量傳遞給
    外層的光觸媒,利於電子電洞的分離,提升產氫效率最高可達1.62 倍。
    我們也改變Nanoshell 上不同SiO2 厚度,觀察光觸媒與Nanoshell 之
    間的交互作用對於產氫效率的影響,當無SiO2 在兩者之間時,電子會在兩
    者之間傳遞,而過厚的SiO2 會阻礙表面電漿效應的能量傳遞,而使得光觸
    媒產氫效率提升幅度下降。
    將光觸媒與Nanoshell 直接合成核殼結構,可能會有光觸媒過厚或是
    部分Nanoshell 裸露的情形產生,所以我們嘗試先在ZIS 表面改質,再與
    Nanoshell 合成核殼結構,反之,也可以在Nanoshell 表面改質,再與ZIS
    合成核殼結構,使得每個Nanoshell 的表面都有均勻分布的ZIS,得到最佳的核殼結構。;Energy crisis and environmental protection are big challenges of this century. Hydrogen is the most promising replacement for fossil fuels. Therefore, the development of visible-light-driven photocatalysts for water splitting is critical. The purpose of this study is to effectively use photocatalysts to change solar energy into hydrogen energy.
    We used ZIS (ZnmIn2S3+m) as visible-light-driven photocatalyst. Its water splitting reaction rate increased with the temperature. The absorption of the nanoshells in the coreshell nanoparticles can be adjusted systematically from visible light to IR range making the solar energy into heat and resulted in local thermal effect which can effectively enhance hydrogen evolution to 74%. Because the nanoshell was formed by silver and gold nanoparticles, it had the surface plasmon resonance. Using nanoshells absorbing at 700 nm can transfer enengy to photocatalysts and separated the combination of electrons and holes in photocatalysts making the enhancement of hydrogen evolution to 1.62 times.
    We also changed the thickness of SiO2 on the nanoshells to observe the interaction between nanoshells and coreshells which might influence the enhancement of hydrogen evolution. When there was no SiO2, electron would transfer between nanoshells and photocatalysts. Thicker thickness of SiO2 might hinder the translation of energy from nanoshells decreasing the enhancement of hydrogen evolution.
    Making photocatalysts directly into coreshell structures might cause thicker shell or uncovered nanoshells. So we try to mdify the surface of ZIS or mdify the surface of nanoshells and formed coreshell, making uniform distribution of ZIS on nanoshells.
    顯示於類別:[化學工程與材料工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML388檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明