English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 22965160      Online Users : 329
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/65028


    Title: 清洗液處理後之銅晶圓表面之濕潤行為;Wetting behavior on copper wafers after etch cleaning processes
    Authors: 涂勝宏;Tu,Sheng-Hung
    Contributors: 化學工程與材料工程學系
    Keywords: 接觸角;濕潤性;氧化銅;氧化亞銅;親水性;疏水性;contact angle;wettability;cuprous oxide;cupric oxide;hydrophilic;hydrophobic
    Date: 2014-07-31
    Issue Date: 2014-10-15 14:38:38 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文內容主要分成兩個部分。第一部分主要是探討在矽晶片上利用物理沉積方式產生之銅薄膜在經過雙氧水氧化過後其表面的特性變化,主要觀察的方式為監控接觸角隨著時間的變化與表面氧化層的膜厚變化。第二部分則是探討銅薄膜使用醋酸處理過後可得到表面為純銅的潤濕特性,以及使用一般在半導體製程中常用之酸與鹼來探討其對於銅表面的影響並且以市售不同氧化態之銅及其氧化物粉末來解釋選擇性蝕刻之行為。

    銅薄膜在雙氧水中經過短暫的浸泡在表面變化生成親水性高的銅氧化層。此親水性高之銅氧化層在常溫常壓下靜置數小時後,其親水特性會漸漸的降低並往疏水性方向變化,在接觸角如此明顯的變化下,使用XPS光譜來分析其銅晶片表面之化學組成變化時,其光譜圖幾乎是一樣,並無預期中有應有之明顯變化。這樣的親水性改變被歸因於最表面的氧化銅產生脫氧原子反應,此論點亦在真空的條件下再次被證實,其反應式可表示為CuO Cu2O + 1/2 O2。在真空下所產生之氧氣會立即被從銅表面移除進而迫使平衡反應向右側進行,其結果造成銅表面疏水性加速變化,同樣的結果在XPS光譜分析比對前後依然無觀察到明顯的變化。

    在本論文之第二部分中,主要是探討純銅表面的濕潤行為以及使用不同酸或鹼溶液處理後的表面行為特性。其中使用的酸或鹼溶液分別為冰醋酸、稀硝酸、稀氫氟酸以及2.38%的TMAH(四甲基氫氧化銨)。首先利用ICP-OES(電感耦合等離子體原子發射光譜)分析各種不同氧化態之銅粉末溶解在不同酸或鹼溶液中的銅離子濃度可以換算出其蝕刻速率及選擇比。此外在醋酸的實驗中可以得到純銅表面並且發現其與純水的接觸角約為45度。銅薄膜表面自然生成之氧化層經過各種酸或鹼溶液處理過後的濕潤行為表現並不盡相同,但是如果先經過冰醋酸之前處理過後,亦即從純銅表面開始反應,再經過不一樣的酸或鹼處理時其表面的濕潤行為會變得很接近,這樣的現象可經由不同氧化態銅粉之溶解實驗以及冰醋酸處理後會得到純銅表面之原理而得到解釋。純銅表面在經過不同酸或鹼溶液處理後在常溫常壓下之再氧化行為過程中之銅氧化層膜厚變化與純水之接觸角變化也在本論文中有所探討。

    ;The thin CuO flm is acquired by a quick dip of copper in H2O2 solutions at room temperature. The CuO filmq appears smooth and exhibits superhydrophilic nature. The composition change cannot be verifed by X-ray photoelectron spectroscopy but can be manifested by the water contact angle. In the ambient condition, the thickness of the oxidized layer and the surface hydrophobicity grow gradually, while the chemical composition of the overall oxidized film remains essentially unchanged. That is, in the vacuum, the growth rate of the hydrophobicity is significantly elevated, revealing deoxidation on the upmost surface. Our results indicate that growing hydrophobicity on the CuO film is spontaneous and the reversible wettability transition can be observed by H2O2 oxidation and vacuum deoxidation.

    The wet cleaning process in semiconductor fabrication often involves the immersion of the copper wafer into etching solutions and thereby its surface properties are significantly altered. The wetting behavior of a copper film deposited on silicon wafer is investigated after a short dip in various etching solutions. The etchants include glacial acetic acid and dilute solutions of nitric acid, hydrofluoric acid, and tetramethylammonium hydroxide. A thin oxide layer always remains on the surface of as-received Cu wafers when they are subject to etching treatments. A pure Cu wafer can be obtained by the glacial acetic acid treatment and its water contact angle (CA) is about 45. As the pure Cu wafer is placed in the ambient condition, the oxide thickness grows rapidly to the range of 10 to 20 Å within 3 hours and the CA on the hydrophilic surface also rises. In the vacuum, it is surprising to find that the CA and surface roughness of the pure Cu wafer can grows significantly. These interesting results may be attributed to the rearrangement of surface Cu atoms to reduce the surface free energy.
    Appears in Collections:[化學工程與材料工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML600View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明