English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70585/70585 (100%)
Visitors : 23156145      Online Users : 469
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/65064

    Title: 探討牛樟芝在液態中與酵母菌共培養並利用兩階段式操作以增加三萜產量
    Authors: 吳介人;Wu,Chieh-Jen
    Contributors: 化學工程與材料工程學系
    Keywords: 牛樟芝;共培養;兩階段式發酵
    Date: 2014-08-26
    Issue Date: 2014-10-15 14:39:20 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 牛樟芝為實用藥菇中的一種,食用藥菇最吸引人的地方在其抗癌、抗腫瘤的效果,而牛樟芝所含有的特殊三萜類及胞外多醣,為其他植物所沒有,其最主要的功能為:抑制組織胺釋放、防止過敏、促進肝功能、促進血小板凝集、以及降血脂,防止中老年人發生心血管疾病,因此具有相當潛力被開發為未來醫療用藥品,或作為國人近年來最熱門的保健食品。
    過去增加總三萜的方法,大部分著重於培養基的改變,以及環境因子的操控,近年有學者探討兩階段式發酵,由於三萜的生產是因為牛樟芝菌(Antrodia cinnamomea)受到環境限制而產生的二次代謝物,因此第一階段讓菌體快速生長,第二階段在菌體生長到最高峰時改變環境因子增加總三萜產量。
    因此,本計畫嘗試開發兩階段發酵製程系統。在第二階段加入酵母菌進行共培養並以循環式操作間歇性供氧來提升總三萜的產量,並探討共培養機制。實驗結果顯示,第二階段以靜置操作及酵母菌接菌量25%(v/v)能產出最高三萜量46.5 mg/g DW,由實驗結果可發現,酵母菌所產生的酒精為三萜產量增加之主因。

    ;Antrodia cinnamomea is one of the medicinal mushrooms. The most attractive characteristic of the medicinal mushrooms is its anti-tumor effect. Some bioactive constituents from the fruiting bodies of
    A. cinnamomea have been isolated and characterized as a series of polysaccharides, steroids, triterpenoids, and sesquiterpene lactone.
    Polysaccharide components extracted from A. cinnamomea mycelia have been shown exhibiting an anti-hepatitis B virus surface antigen effect, having pronounced anti-tumor effects on both in vitro and in vivo model, and displaying strong immunomodulatory and anti-inflammatory effects. The triterpenoids extracted from A. cinnamomea have anti-cholinergic and anti-serotonergic activities activation of alternative-pathway complement and plasma clotting activity. In the results of its perceived health benefits, A. cinnamomea has gained wide popularity as a health food and became the most valuable mushroom in Taiwan.
    However, because of its host specificity, slow growth rate and rarity in nature, the fruiting bodies of A. cinnamomea have become the most expensive mushrooms in Taiwan in recent years. Thus, investigators have exerted their efforts to prepare this mushroom from submerged culture. Submerged culture gives rise to potential advantages of higher mycelial production in a compact space and shorter time with lesser chances of contamination.
    In previous research, determining how to increase the production of triperpenoids is by the control of cultivating conditions or modification of media compositions. Recently, some researchers investigate the two-stage submerged fermentation. Since the production of triperpenoids is the bioactive metabolites in the result of limitation of culture condition, we let the A. cinnamomea grow in high speed, following by investigating when the biomass of A. cinnamomea reach the highest content and the fungus might have entered into the idiophase, the growth period that secondary metabolites are produced.
    Thus, the main objectives of this proposal are to develop two-stage fermentation system. In first stage, we make the A. cinnamomea grow in high speed for 12 days, and Saccharomyces cerevisiae was added to the fermentation broth in second stage with cycling or static process to enhance triterpenoids production. The amount of triterpenoid reached 46.5 mg/g DW by using static operation with 25% of inoculation level of the Saccharomyces cerevisiae in 250 ml shake flask.
    Appears in Collections:[化學工程與材料工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明