English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70585/70585 (100%)
Visitors : 23160147      Online Users : 489
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/65349

    Title: 磁場對水電解產氫效率增益之機制研究;The investigation on the mechanism of efficiency enhancement for hydrogen production by water electrolysis with magnetic field
    Authors: 吳慶鴻;Wu,Ching-hung
    Contributors: 能源工程研究所
    Keywords: 電解水;勞侖茲力;磁流體動力學;Water electrolysis;Lorenz force;magnetohydrodynamic
    Date: 2014-07-08
    Issue Date: 2014-10-15 15:28:46 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本實驗利用鎳電極,在電解液氫氧化鉀濃度25wt%時,進行電解水產氫,由恆電位儀與高速攝影機所記錄得到的資料,探討不同電流密度、電極間距加入磁場後,氣泡上升速度與氣泡覆蓋率,受到磁流體動力學(MHD)中向上勞侖茲力(Lorentz force)之影響。
    結合氣泡速度與覆蓋率,可得體積流率之結果,加入磁場狀態下,電極間距2 mm、電流密度0.3 A/m^2,體積流率增加率為67.8 %;電極間距5 mm、電流密度0.3 A/m^2,體積流率增加率為42 %,兩者節省之電功率百分比,也皆有極小之增加值。
    ;As water electrolysis is conducted with an electric field perpendicular to a magnetic field, Lorenz force will produce magnetohydrodynamic (MHD) convection and affect the gas bubble evolution. This experiment uses nickel as electrodes, and the potassium hydroxide electrolyte concentration is 25wt%. Potentiostat and high-speed camera are used to record the bubble evolution.
    The upward Lorentz force can accelerate the speed bubbles to leave the surface of the electrode, which lowers the electrochemical polarization. Therefore, from the bubble behavior shown in the picture. We observe that all the bubbles will be speeded under the action of Lorenz force for different electrode distances and current densities. However, the coverage of bubbles is reduced. The biggest bubble on the electrode surface is smaller. The bubble diameter of the maximum amount of bubbles distribution is smaller.
    Bubble flow rate can be obtained by combing the bubble speed and coverage. In a upward Lorentz force, the electrode distance 2 mm and current density 0.3 A/m^2, the flow rate increases about 67.8%. While it is about 42% for the electrode distance 5 mm and current density 0.3 A/m^2. The economic power efficiency was also saved a little.
    Water electrolysis is a commonly used method to produce Hydrogen. Magnetic field does not need to consume additional energy. However, it can increase hydrogen production efficiency and reduce energy consumption. Water electrolysis adds magnetic field has development potential in the future.
    Appears in Collections:[能源工程研究所 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明