English  |  正體中文  |  简体中文  |  Items with full text/Total items : 74010/74010 (100%)
Visitors : 24082235      Online Users : 520
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/65355

    Title: 甘胺酸-硝酸燃燒合成法製備固態氧化物燃料電池陰極材料La0.8Sr0.2MnO3、La0.6Sr0.4Co0.2Fe0.8O3與其電化學性質之研究;Synthesis and electrochemical properties of La0.8Sr0.2MnO3 and La0.6Sr0.4Co0.2Fe0.8O3 by glycine-nitrate combustion method
    Authors: 葉哲均;YEH-CHE-CHUN
    Contributors: 能源工程研究所
    Keywords: 固態氧化物燃料電池;陰極材料;燃燒合成法;電化學;SOFC;cathode;combustion;electrochemistry
    Date: 2014-08-13
    Issue Date: 2014-10-15 15:28:59 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文以甘胺酸-硝酸燃燒合成法(Glycine-nitrate combustion method)製備鑭、鍶、錳氧化物(La0.8Sr0.2MnO3;LSM)與鑭、鍶、鈷、鐵氧化物(La0.6Sr0.4Co0.2Fe0.8O3;LSCF)陰極材料,並探討前驅溶液在不同pH值、甘胺酸與硝酸之比例(g/n比)與粉體在不同煆燒溫度下之結晶結構、表面形貌、組成、熱性質等,並製成固態氧化物燃料電池(SOFC)全電池,進行電化學測試,以評估作為燃料電池陰極的可行性。
    本研究利用X光繞射分析儀(XRD)探討合成出之陰極材料粉體結晶結構;使用掃描式電子顯微鏡(SEM)來觀察其微結構、表面形貌;能量散佈分析儀(EDS)進行元素半定量分析;利用熱重分析儀(TGA)來分析陰極粉體在高溫下之變化,最後再將陰極粉體製成全電池,以直流電極化曲線(I-V curve)和電化學交流阻抗頻譜圖(EIS)來測試電池的性能。
    研究結果顯示,前驅溶液經過適當的pH值控制後,能夠增加金屬陽離子的錯合能力,使材料合成時生成之雜相(Impurity phase)減少。且g/n比為1.0以及1.5時,能夠形成純相之LSM與LSCF結構,經過1000oC的煆燒後得到奈米等級(約200nm)與具備多孔性(Porous)之陰極材料粉體。全電池性能測試結果顯示,LSM在g/n比1.0、操作溫度850oC具有最高輸出電流密度:469.474mA/cm2與最高功率密度:209.850mW/cm2。LSCF在高溫燒結下易與電解質材料(YSZ)發生反應,形成SrZrO3絕緣相,導致電池輸出性能大幅下降。
    ;Glycine-nitrate combustion method was used to prepare the precursor which could be calcined to form La0.8Sr0.2MnO3 (LSM) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) as the cathode catalyst materials of the solid oxide fuel cell(SOFC). The effect of pH value from precursor, glycine to nitrate ratio(g/n ratio) and calcination temperature on the crystalline structure, morphology, composition, thermal and electrochemical properties were of interest.
    The crystal structure was determined by X-ray diffractmeter (XRD)The surface morphology of the oxide powders was examined through field emission scanning electron microscope (FE-SEM) and their composition was analyzed by the equipped energy dispersive spectrophotometer (EDS). The thermal property was determined by the thermal gravimetric analysis (TGA). After makng the calcined oxides as the cathode catalysts in a single cell. I-V polarization test and the electrochemical impedance were conducted to evaluate the electrochemical performance.
    LSM and LSCF have successfully been developed after the specific pH value and g/n ratio controlled. All the powders prepared by glycine-nitrate combustion method were nanosized. The electrochemical test showed the LSM with maximum current density: 469.474mA/cm2 and the maximum power density: 209.850mW/cm2 when the g/n ratio was equal to 1.0. Additional diffraction peaks assigned to SrZrO3 phase were found after firing the LSCF-YSZ mixture at 900 and 1000ºC indicating a reaction between LSCF and YSZ which is stronger as the temperature increases.
    Appears in Collections:[能源工程研究所 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明