我們先合成出化合物N,N-dimethyldecanethiol (6),並利用氯金酸與檸檬酸鈉製備出粒徑大小約為13 nm 之金奈米粒子水溶液7。再將過當量之化合物N,N-dimethyldecanethiol (6)與金奈米粒子水溶液7 混合,震盪3.0 小時後,因為金奈米粒子7之比重比N,N-dimethyldecanethiol (6)來得大很多,則可藉由離心除去未接上金奈米粒子之化合物N,N-dimethyldecanethiol (6),可得到硫金鍵官能基化之金奈米粒子8。再利用LiI 與3-bromo-1-propanol混合液與硫金鍵官能基化之金奈米粒子8反應,震盪24.0小時後,再藉由離心除去未反應掉之LiI 與3-bromo-1-propanol混合液,則可合成出具有四級胺鹽之金奈米粒子9。 可利用不同型態金奈米粒子水溶液之溶液顏色、紫外線光譜 (UV)、熱重量損失分析圖譜 (TGA)、紅外線光譜 (IR)和穿透式電子顯微鏡(TEM),判斷並討論三種金奈米粒子水溶液之性質。 The first step is to synthesize N,N-dimethyldecanethiol (6), and use HAuCl4 and sodium citrate to react then get 13 nm gold nanoparticales (7). Following step is to mix N,N-dimethyldecanethiol (6) and gold nanoparticales (7). After 3.0 hrs , we can use centrifugation to remove N,N-dimethyldecanethiol (6), which is not connected with gold nanoparticales (7) to get compound 8. Then we functionalize the compound 8 by using the LiI and 3-bromo-1-propanol successfully, and we get the compound 9. We can use ultraviolet spectroscopy (UV) , thermogravimetric analyzer (TGA) , infrared spectroscopy (IR) and transmission electron microscopy (TEM) to determine and discuss the three types of gold nanoparticales.