English  |  正體中文  |  简体中文  |  Items with full text/Total items : 74010/74010 (100%)
Visitors : 24643184      Online Users : 383
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/65481

    Title: 半母數經驗概似函數與 有母數強韌概似函數之權衡;Semi-parametric empirical likelihood versus parametric robust likelihood
    Authors: 蕭維政;Hsiao,Wei-cheng
    Contributors: 統計研究所
    Keywords: 經驗概似函數;強韌概似函數;強韌概似函數;Empirical likelihood;Robust likelihood;Misleading evidence
    Date: 2014-07-16
    Issue Date: 2014-10-15 15:32:52 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 經驗概似(empirical likelihood)函數為一種不需知道母體分配的概似函數。進一步調整後的經驗概似函數能在小樣本數或估計的參數個數過多時,更快的達到大樣本近似常態性質。同樣地,Royall and Tsou (2003) 提出的有母數的強韌概似函數也提供了不需母體分配假設下完整的統計推論。
    ;Empirical likelihood is a distribution-free approach that allows one to construct likelihood functions without knowing the true underlying distribution. Modification has been proposed to ensure that the large sample property is better achieved when sample size is not large or when there are many parameters. Alternatively, one can employ the parametric robust likelihood procedure proposed by Royall and Tsou (2003) to make likelihood inference under model misspecification.
    We give a thorough comparison between the two model-independent robust likelihood approaches and show that the method by Royall and Tsou (2003) is superior to the empirical likelihood in terms of various performance benchmarks.
    Appears in Collections:[統計研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明