中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/6558
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41648363      Online Users : 1476
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/6558


    Title: 細菌物種基因體中非編碼小片段核糖核酸之預測;Prediction of Small Non-Coding RNA in Bacterial Genomes
    Authors: 林俊宏;Jun-Hong Lin
    Contributors: 系統生物與生物資訊研究所
    Keywords: 非編碼小片段核糖核酸;支持向量機;高度保留區段;細菌;預測;prediction;bacteria;small non-coding RNA (sRNA);ncRNA;support vector machine (SVM);conservation;sigma70 promoter;Rho-independent terminator;attenuator;Hfq protein
    Date: 2008-07-03
    Issue Date: 2009-09-22 10:22:23 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 非編碼小片段核糖核酸 (sRNAs) 在許多細胞中扮演著重要調控功能的角色,由於非編碼小片段核糖核酸所具有特性使然: 非編碼小片段核糖核酸長度較短、 不會轉譯成蛋白質,以及穩定性會隨著不同條件而改變,因此現今以實驗及計算方法預測非編碼小片段核糖核酸皆相當困難。而目前大多數已知的非編碼小片段核糖核酸是在大腸桿菌上被發現,且高度保留於相近物種的基因體中。 因此我們發展出一項整合方法,藉由分析已知的非編碼小片段核糖核酸具有特徵,進而搜尋相近物種基因體上位於基因之間非編碼區內的高度保留區域,再以支持向量機(SVM)判定,以求發現新的非編碼小片段核糖核酸基因。 Small non-coding RNA genes have been shown to play important regulatory roles in a variety of cellular processes, but prediction of non-coding RNA genes is a great challenge to both experimental and computational approach due to the characteristics of sRNAs: small size, not translated into proteins, and varied stability under different conditions. Most known sRNAs have been identified in Escherichia coli and conserved in closely related organisms. We hope to develop an integrative approach to search highly conserved intergenic regions among related bacterial genomes for combination of various characteristics extracting from known sRNAs genes on Escherichia coli using support vector machines (SVM) to predict novel sRNA genes.
    Appears in Collections:[Institute of Systems Biology and Bioinformatics] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明