English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75369/75369 (100%)
Visitors : 25440807      Online Users : 262
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/65648

    Title: Itus: Behavior-based Spamming Groups Detection on Facebook
    Authors: 顏孟加;Yan,Meng-Jia
    Contributors: 資訊工程學系
    Keywords: 社交網路;臉書;購物社團;online social network;Facebook;Spamming Group
    Date: 2014-07-25
    Issue Date: 2014-10-15 17:07:21 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Facebook為目前全球最大的社交網路,其每日活躍用戶總數超過8.02億人。不幸的是,Facebook也成為攻擊者們的目標,攻擊者利用Facebook傳播大量的釣魚訊息,並從中獲利。其中一個被濫用來散播訊息的管道為社團(Group)服務,由於社團邀請機制能夠不經朋友的允許將朋友加入社團中,一旦攻擊者盜用了正常使用者的帳號,便能迅速地將這些使用者的朋友們通通加入這些惡意社團,導致這些朋友也成為了受害者之一。


    我們開發了一個應用程式-Itus,目的是自動、即時地為使用者找出已經加入的社團中是否存在著惡意社團。除了使用Facebook API取得使用者的社團資訊、成員互動程度之外,更進一步地分析成員間的邀請紀錄,將被攻擊者濫用的邀請機制轉化為偵測方式。我們使用support vector machine進行資料訓練及預測,實驗結果顯示邀請紀錄能夠有效地改善Itus的準確率,且誤判率在目前存在的自動偵測惡意社團機制中是最低的。
    ;Facebook is the largest online social network, and total number of daily active users on Facebook is more than 802 million in March 2014. Unfortunately, attackers are also expanding their territory to Facebook to propagate spam. One of the ways to propagate spam on Facebook is using Facebook Groups.

    Group’s members can invite their friends to join the Group without invitees’ permission. However, questions then arise about the friendly invitation mechanism. Using fake or compromised accounts, attackers can spread invitation to all friends, that is, not only the compromised account, but all his friends become the victims. Then the victims start to receive notifications by default when any member posts in the Group’s Wall, even though they have not visited these Groups.

    The Facebook report mechanism cannot effectively detect spamming Groups. Many active spamming Groups have survived for five months at least. In this paper, we develop Itus to identify spamming Groups and protect Facebook users from them. In addition to extracting the static features from Facebook Groups, we are concerned with relationship between members and social activities in a Group. This work is hard to implement because we have to crawl the Group’s invitation records manually to find out the relations of members which Facebook does not provide due to the privacy concern.

    The invitation records are major contributors to improve accuracy of our mechanism. Experimental results employed a support vector machine (SVM) on identifying spamming Groups, showing that the best total error rate of Itus is 3.27%. In the future, we will try to cooperate with Facebook, accessing these sensitive data which have become anonymous to prevent users’ personal information from being breached and illegally used.
    Appears in Collections:[資訊工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明