English  |  正體中文  |  简体中文  |  Items with full text/Total items : 72887/72887 (100%)
Visitors : 23292246      Online Users : 551
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/65674

    Title: 利用直覺模糊集合為基礎之整體與局部特徵及其在彩色紋理分析之應用;Global and Local Features Based on Intuitionistic Fuzzy Sets for Color Texture Analysis and Application
    Authors: 顏志平;Yen,Chih-Ping
    Contributors: 資訊工程學系
    Keywords: 直覺模糊集合;紋理分類;模糊樣式直方圖;模糊樣式頻譜;資料鑑識;intuitionistic fuzzy sets (IFSs);texture classification;fuzzy motif histogram (FMH);fuzzy motif spectrum (FMS);data forensics
    Date: 2014-07-28
    Issue Date: 2014-10-15 17:08:02 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 紋理分類技術在電腦視覺的應用上,扮演相當重要的角色,在過去幾年儘管已有許多這方面技術的提出,但克服因環境變動如旋轉及缩放所造成紋理分類不一致的現象,仍是最主要的課題。
    基於「直覺模糊集合」(intuitionistic fuzzy sets, IFSs)我們提出嶄新的整體與局部特徵,此兩個特徵能描述3個像點間的微紋理結構及其統計資訊,這整體特徵稱為「模糊樣式直方圖」(fuzzy motif histogram, FMH),而局部特徵稱為「模糊樣式頻譜」(fuzzy motif spectrum, FMS);同時,我們也設計出系統架構與直覺模糊集合的相似度比對,透過實驗證明,我們提出的方法不僅有高準確率,並且對旋轉及缩放亦具強韌度。
    ;Texture classification plays an important role in computer vision and has a wide variety of applications. Many methods of color texture analysis have been developed over the years; however, a major problem is that textures in the real world are often not uniform owing to variations in rotation and scale.
    In this thesis, we propose novel features at both the global and local levels—namely, the fuzzy motif histogram (FMH) and the fuzzy motif spectrum (FMS)—using statistics and microtexture information spread across three pixels (i.e., higher-order statistics). Thus, this method achieves texture classification based on the intuitionistic fuzzy sets (IFSs) theory. Furthermore, we offer a system framework and a similarity measure between two IFSs. By conducting many experiments, we explored the effectiveness of the proposed methods, as well as their robustness against image changes, such as changes in rotation and scale.
    Additionally, it was found empirically that for texture classification, several state-of-the-art IFS-based methods always achieve higher accuracy than non-IFS-based methods. Finally, we used our proposed system for color laser print identification and conducted a feasibility study to examine the system’s potential for use in digitizing a subject-specific, laser print database as part of data forensics and crime investigation operations.
    Appears in Collections:[資訊工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明