English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75369/75369 (100%)
Visitors : 25465414      Online Users : 162
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/65731

    Title: Bus Arrival Prediction - to Ensure Users Not to Miss the Bus (Preliminary Study based on Bus Line 243 Taipei)
    Authors: 陸亦福;Fanani,Lutfi
    Contributors: 資訊工程學系
    Keywords: 預測公車到站時間;等待時間;常態分布;Bus Arrival Prediction;Waiting Time;Normal Distribution
    Date: 2014-07-30
    Issue Date: 2014-10-15 17:09:04 (UTC+8)
    Publisher: 國立中央大學
    Abstract: FANANI, LUTFI. 公車到站時間預測 - 目的確保使用者不錯過公車 (基於台北公車路線243的初步研究)
    對於搭乘公車的人而言,公車到站時間是很重要的,而且這個時間會被很多因素所影響,例如: 等紅綠燈、交通擁塞以及天氣狀況等。這些因素都會影響到公車到站時間,進而延長乘客的等候時間,所以提供乘客精準的時間有助於乘客下決定以及減少在公車站等待公車的時間。本篇論文中提出一種常態分佈的方法並使用行車資料中的隨機變數針對台北的243公車進行預測,而我們所使用的資料來自於台北公車資料庫。
    關鍵字: 預測公車到站時間、等待時間、常態分布;FANANI, LUTFI. Bus Arrival Prediction – to Ensure Users Not to Miss the Bus (Preliminary Study based on Bus Line 243 Taipei).
    The bus arrival time is the primary information for most city transport travelers. It is influenced by stochastic variation in number of factors, (e.g. intersection delay, traffic congestion, and weather condition) resulting in buses to deviate from the predetermined schedule and lengthening of passenger waiting times for buses. Providing passengers with an accurate information system of bus arrival times can reduce passenger waiting times. In this thesis, we used the normal distribution method to the random of travel times data in a bus line number 243 in Taipei area. In developing the models, data were collected from Taipei Bus Company. A normal distribution method used for predicting the bus arrival time in bus stop to ensure users not to miss the bus, and compare the result with the existing application. The result of our experiment showed that our proposed method has a better prediction than existing application, with the probability user not to miss the bus in peak time is 93% and in normal time is 85%, greater than from the existing application with the 65% probability in peak time, and 70% in normal time.
    Appears in Collections:[資訊工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明