English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41637214      線上人數 : 1154
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/65731


    題名: Bus Arrival Prediction - to Ensure Users Not to Miss the Bus (Preliminary Study based on Bus Line 243 Taipei)
    作者: 陸亦福;Fanani,Lutfi
    貢獻者: 資訊工程學系
    關鍵詞: 預測公車到站時間;等待時間;常態分布;Bus Arrival Prediction;Waiting Time;Normal Distribution
    日期: 2014-07-30
    上傳時間: 2014-10-15 17:09:04 (UTC+8)
    出版者: 國立中央大學
    摘要: FANANI, LUTFI. 公車到站時間預測 - 目的確保使用者不錯過公車 (基於台北公車路線243的初步研究)
    對於搭乘公車的人而言,公車到站時間是很重要的,而且這個時間會被很多因素所影響,例如: 等紅綠燈、交通擁塞以及天氣狀況等。這些因素都會影響到公車到站時間,進而延長乘客的等候時間,所以提供乘客精準的時間有助於乘客下決定以及減少在公車站等待公車的時間。本篇論文中提出一種常態分佈的方法並使用行車資料中的隨機變數針對台北的243公車進行預測,而我們所使用的資料來自於台北公車資料庫。
    我們使用常態分佈的方式對公車的到站時間進行預測並確保使用者不會錯過公車,我們也將這個結果與已存在的方法進行比較。使用者使用我們所建議的方法在尖峰時間不會錯過公車的機率是93%,而一般時間是85%。已存在的方法在尖峰時間是65%,而一般時間是70%。經過我們的實驗證實我們所建議的方法比已存在的方法可以更加準確地預測公車到站時間。
    關鍵字: 預測公車到站時間、等待時間、常態分布;FANANI, LUTFI. Bus Arrival Prediction – to Ensure Users Not to Miss the Bus (Preliminary Study based on Bus Line 243 Taipei).
    The bus arrival time is the primary information for most city transport travelers. It is influenced by stochastic variation in number of factors, (e.g. intersection delay, traffic congestion, and weather condition) resulting in buses to deviate from the predetermined schedule and lengthening of passenger waiting times for buses. Providing passengers with an accurate information system of bus arrival times can reduce passenger waiting times. In this thesis, we used the normal distribution method to the random of travel times data in a bus line number 243 in Taipei area. In developing the models, data were collected from Taipei Bus Company. A normal distribution method used for predicting the bus arrival time in bus stop to ensure users not to miss the bus, and compare the result with the existing application. The result of our experiment showed that our proposed method has a better prediction than existing application, with the probability user not to miss the bus in peak time is 93% and in normal time is 85%, greater than from the existing application with the 65% probability in peak time, and 70% in normal time.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML380檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明