中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/65825
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41647375      在线人数 : 2237
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/65825


    题名: 融合掌紋及掌背血管影像之生物認證系統;Biometric Verification System Using Fused Image of Palm Print and Palm-dorsa Vein
    作者: 王世宏;Wang,Shih-Hung
    贡献者: 資訊工程學系
    关键词: 掌紋;掌背血管;影像融合
    日期: 2014-08-28
    上传时间: 2014-10-15 17:11:09 (UTC+8)
    出版者: 國立中央大學
    摘要: 以生物特徵作為身份認證系統逐漸受到重視,且在安全系統領域扮演了重要的角色。已經有許多生物特徵被廣泛的應用在個人認證系統,例如指紋、虹膜以及臉等。但是傳統的單一特徵身份認證系已經逐漸無法有所突破,而且反詐騙能力不足。相較之下,多特 徵身份認證系統由於擷取了多重生物特徵,優點及實用性都高於單一特徵身份認證統。 本系統採用了兩種生物特徵:掌紋及掌背血管。

    本篇論文首先應用一個方法擷取感興 區塊,此方法可打破限制,利用非固定式的裝置收集掌紋及掌背血管影像。接著我們將掌紋及背血管進行影像融合,以得到比單張影像更豐富且有用的特徵。此外,我們利用新的特徵擷取方法來獲得影像中的特徵資訊。最後分別以樣板比對以及支援向量機兩種分類技術來區分是否為本人。實驗結果得到98. 73%的準確率,這說明了我們所提出的方法是有效果且具可靠性 。;Biometric verification gradually plays an important role and highly demand for security systems. There are many biometric features including fingerprint, iris, hand geometry and facial image that can be used for biometric verification. However, the performance of traditional uni-model biometric systems can not meet the damand in providing satisfactory anti-spoofing capabilities. Multi-model biometric systems are then emerging with more satisfactory performance than uni-model biometric systems because multiple information can be acquired from different biometric characteristics. In this thesis, two physical biometric features including palm print and palm vein are utilized in our biometric verification system.

    In our approach, we devise a method to extract the region of interest (ROI) which relieves the limitations constrained by traditional docking devices. Then, palm print and palm-dorsa vein images are fused to form a new image for providing richer and more useful information. Next, the features adopted for verification are extracted by using Histogram Iterative Thresholding (HIT). Finally, template matching and support vector machine (SVM) are employed as the classifiers for identity verification. Experimental result shows that 98.73% accuracy rate can be achieved by using our proposed approach. It demonstrates that our proposed approach is efficient and robust in the application of biometric verification.
    显示于类别:[資訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML578检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明