中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/65876
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41651951      Online Users : 1633
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/65876


    Title: The 3-split of multipaths and multicycles with multiplicity 2
    Authors: 謝孟萍;Hsieh,Meng-Ping
    Contributors: 數學系
    Keywords: 圖形三分解;3-split
    Date: 2014-07-02
    Issue Date: 2014-10-15 17:16:35 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 令G為一個圖(graph),若G的邊(edges)可分解成t個同構之子圖,則此t個子圖稱為G的t-split,且稱G是可t分解的(t-splittable)。
    在這個論文裡,我們證明了以下的結果。

    一、 設Q為一個重邊數為2,且總邊數可被3整除的多重路徑(multipaths),則Q為可三分解的。
    二、 設C為一個重邊數為2,且總邊數可被3整除的多重圈(multicycles),則C為可三分解的。
    ;Let G be a graph and t be a positive integer. A t-split of G is a partition of the edges of G into t isomorphic subgraphs. A graph is said to be t-splittable if
    it has a t-split.
    In this thesis we prove the following results.

    Theorem. Let Q be a multipath with multiplicity 2 such that jE(Q)j=0 (mod 3). Then Q is 3-splittable.

    Theorem. Let C be a multicycle with multiplicity 2 such that jE(C)j=0 (mod 3). Then C is 3-splittable.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML505View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明