English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70585/70585 (100%) Visitors : 23035292      Online Users : 331

 Please use this identifier to cite or link to this item: `http://ir.lib.ncu.edu.tw/handle/987654321/65876`

 Title: The 3-split of multipaths and multicycles with multiplicity 2 Authors: 謝孟萍;Hsieh,Meng-Ping Contributors: 數學系 Keywords: 圖形三分解;3-split Date: 2014-07-02 Issue Date: 2014-10-15 17:16:35 (UTC+8) Publisher: 國立中央大學 Abstract: 令G為一個圖(graph)，若G的邊(edges)可分解成t個同構之子圖，則此t個子圖稱為G的t-split，且稱G是可t分解的(t-splittable)。在這個論文裡，我們證明了以下的結果。一、 設Q為一個重邊數為2，且總邊數可被3整除的多重路徑(multipaths)，則Q為可三分解的。二、 設C為一個重邊數為2，且總邊數可被3整除的多重圈(multicycles)，則C為可三分解的。;Let G be a graph and t be a positive integer. A t-split of G is a partition of the edges of G into t isomorphic subgraphs. A graph is said to be t-splittable ifit has a t-split.In this thesis we prove the following results.Theorem. Let Q be a multipath with multiplicity 2 such that jE(Q)j=0 (mod 3). Then Q is 3-splittable.Theorem. Let C be a multicycle with multiplicity 2 such that jE(C)j=0 (mod 3). Then C is 3-splittable. Appears in Collections: [Graduate Institute of Mathematics] Electronic Thesis & Dissertation

Files in This Item:

File Description SizeFormat
index.html0KbHTML414View/Open