English  |  正體中文  |  简体中文  |  Items with full text/Total items : 73032/73032 (100%)
Visitors : 23295461      Online Users : 401
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/65881

    Title: noone;A Note on Geometric Ergodicity of Markov Chains
    Authors: 盧炤傑;Lu,Chao-Chieh
    Contributors: 數學系
    Keywords: 馬可夫鏈;幾何遍地性;收斂參數;Markov Chain;Geometric Ergodicity;Convergence parameter
    Date: 2014-07-21
    Issue Date: 2014-10-15 17:16:46 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 對於可數多個態、同質的馬可夫鏈我們已經有一些基本的認知,而且由D. G. Kendall 證明一個對於數列 (p_ij^((n) )-π_ij) 幾何收斂的‘solidarty theorem’。我們想檢驗幾何遍地性以及去得到馬可夫鏈的幾何收斂參數 ρ_ij。因此,我們在中間建構並且推廣一些的馬可夫鏈的極限定理;此外,我們可以在一個共同的圓 C_(R^′ ) (R^′>R) 使生成函數P_00 (z)延拓成亞純函數(meromorphic function)使其在 z=R 有一個簡單極(simple pole)。最後,我們去推論出幾何遍地性以及幾何收斂參數 ρ_ij。;We already had known about some basic understanding of homogeneous Markov chain with countable state space, and D. G. Kendall has proved a ′solidarity theorem′ for geometric convergence of the sequences (p_ij^((n) )-π_ij ) with convergence parameter ρ_ij. We shall investigate the geometric ergodicity and the convergence parameters ρ_ij. Therefore, we construct and generate some theorems of Markov chain. Also, we extend the genereating function P_00 (z) as a meromorphic function within a common disk C_(R^′ ) (R^′>R) which it has only simple pole at z=R. Finally, we deduce some results for geometric ergodicity and convergence parameters ρ_ij.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明