English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69561/69561 (100%) Visitors : 23156046      Online Users : 432

 Please use this identifier to cite or link to this item: `http://ir.lib.ncu.edu.tw/handle/987654321/65894`

 Title: Vector Fields With Given Vorticity, Divergence And The Normal Trace Authors: 林彥廷;Lin,Yen-ting Contributors: 數學系 Keywords: 向量場;旋度;散度;邊界條件;vector field;vorticity;divergence;boundary condition Date: 2014-08-29 Issue Date: 2014-10-15 17:17:05 (UTC+8) Publisher: 國立中央大學 Abstract: 對於一般的向量值函數\$\u\$，我們有\$\u = \curl \w + \nabla p\$的分解。我們證明了當函數\$\u\$的旋度、散度與邊界法向量在三維球上給定並滿足可解條件時，\$\u\$的存在性與唯一性。我們先考慮了在三維的全空間和上半空間對應問題之情況及求解方法，並從這些方法推得在三維的球上這個特殊情形下，另一種建構解的方式和一個與橢圓方程正則理論相似的正則性理論。;For a general vector-valued function \$\u\$, we have the decomposition \$\u = \curl \w + \nabla p\$. We proved the existence and uniqueness of \$\u\$ when its vorticity, divergence and normal trace are prescribed in the unit ball of \$\bbR^3\$ under the assumption that the solvability condition holds. We start from solving for the velocity for the case that the domain under consideration is \$\bbR^3\$ or \$\bbR^3_+\$, and learn from this experience to provide another approach of constructing the solution and prove a regularity theory similar to the elliptic regularity theory. Appears in Collections: [Graduate Institute of Mathematics] Electronic Thesis & Dissertation

Files in This Item:

File Description SizeFormat
index.html0KbHTML427View/Open

 社群 sharing

::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期：8-24-2009 :::