English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 22973995      Online Users : 421
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/65956


    Title: 平方和模糊系統觀測器設計 -齊次多項式法;SOS-Based Fuzzy Observer Dsigns -Homogeneous Polynomial Approach
    Authors: 章為盛;Chang,Wei-sheng
    Contributors: 機械工程學系
    Keywords: 非二次穩定;平方和;參數相依齊次多項式;模糊系統;尤拉齊次多項式定理;Non-quadratic stability;Sum of squares;Homogeneous polynomially parameter-dependent (HPPD) functions;T-S fuzzy systems;Euler’s Theorem for Homogeneous Functions
    Date: 2014-07-28
    Issue Date: 2014-10-15 17:19:10 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文主要研究連續及離散模糊觀測系統的非二次穩定
    (Non-quadratic stability) 條件,關於擴展狀態決定於非二次李亞普諾
    夫函數,其函數形式是V(e)=1/2e^TQ(e)e,其中條件Q(e)> 0 取決於Q(e)
    是一正定的梯度向量(gradient vector)。遺憾的是,此梯度向量Q(e)
    是一非凸面體(nonconvex) 的問題,因此可觀測的模糊系統
    之穩定性檢測條件,需要使用尤拉齊次多項式定理,並使用其定理之
    齊次性質,以平方和方法(Sum of squares) 去檢驗非凸面體問題,使
    得其模擬系統之空間解更佳。最後,模擬其多項式模糊系統,表現出
    本論文提出之方法是有效的。;In this thesis, we extend of the state dependent Riccati inequalities to non-quadratic Lyapunov function of the form V (e) = 1/2e^TQ(e)e where Q(e) > 0 requires that Q(e) is a gradient of positive definite function.Unfortunately, the test of Q(e) is nonconvex problem. Thus this thesis studies stabilization problems of the polynomial fuzzy systems via homogeneous Lyapunov functions exploiting the Euler’s homogeneity property to construct a family of SOS polynomials that solves the nonconvexity problem and releases conservatism as well. Lastly, examples of polynomial fuzzy systems are demonstrated to show the proposed
    method being effective and effective.
    Appears in Collections:[機械工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML181View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明