English  |  正體中文  |  简体中文  |  Items with full text/Total items : 74010/74010 (100%)
Visitors : 24026262      Online Users : 431
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/66869

    Title: 藍相液晶摻雜旋性聚合物之光電特性研究;Studies of the electro-optical properties of chiral polymer-doped blue phase liquid crystals
    Authors: 詹鈞証;Chan,Chun-Cheng
    Contributors: 照明與顯示科技研究所
    Keywords: 藍相液晶;旋性聚合物;blue phase;chiral polymer
    Date: 2015-01-20
    Issue Date: 2015-03-16 15:52:11 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 近年來藍相液晶的光電特性受到國際間相當的重視,如藍相液晶的存在溫度範圍、藍相液晶對電壓的穩定性等,而大部分藍相液晶的存在溫寬都非常狹窄,尋求拓寬藍相液晶存在溫寬的方法因而顯得非常重要,目前最主要被應用於拓寬藍相液晶溫寬的方式為高分子聚合穩定藍相液晶,有別於利用高分子聚合物,本論文探討旋性聚合物在藍相液晶中的光電特性,並與一般高分子聚合物的效應做比較。
    ;Recently, the electro-optical characteristics of blue phase liquid crystals (BP-LCs), such as the temperature range, stabilization as applying voltages, etc, have been paid much attention significantly. Moreover, the temperature range of BP-LCs is definitely narrow. It is clear that the extension of temperature range is one of the key points in BP-LCs field. Polymer-stabilized blue phase is the most commonly used method to extend the temperature range of BP-LCs. In this thesis, the electro-optical properties of chiral polymer-doped BP-LCs, as well as the comparisons between achiral and chiral polymers, are reported.
    According to the experimental results, the polymerized chiral polymer onto the substrates can be used to extend the temperature range of BP-LCs significantly. To elucidate the mechanism for extending the temperature range of BP-LCs, several factors for the processes of photo-polymerization are considered. They includes (1) concentration of chiral dopant and chiral polymer; (2) LC phase (cholesteric, blue, and isotropic phases) during photo-polymerization; (3) curing duration; (4) cell gap, and others. It is demonstrated that the temperature range of BP-LCs can be extended to 30oC by polymerizing chiral polymer (6 wt%) polymerization in isotropic phase. Refer to some references; the extension of temperature range of BP-LCs via polymer stabilization can only be achieved by polymerizing achiral polymer in LC blue phase. Thus the proposed method (chiral polymer) is much easier than the conventional one (achiral polymer) to extend the temperature range of BP-LCs. Additionally, the electro-optical properties of chiral polymer-stabilized BP-LCs are as good as those of polymer-stabilized BP-LCs.
    Appears in Collections:[照明與顯示科技研究所 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明