English  |  正體中文  |  简体中文  |  Items with full text/Total items : 72887/72887 (100%)
Visitors : 23097022      Online Users : 542
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/66936

    Title: 銅電鍍製程於微小結構製作之應用
    Authors: 高自強;Kao,Chin-Chiang
    Contributors: 機械工程學系
    Keywords: 微電鍍;電化學沈積;陽極軸;micro-electroplated;electrochemical deposition;anode shaft
    Date: 2015-01-30
    Issue Date: 2015-03-16 16:01:09 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究使用電化學沈積方式製作出微米等級的三維元件,在研究過程中,將陽極軸與電鍍試片之間的距離固定,逐步的調整電源供應器的電流與三軸移載平台的移動速度,以製作出外觀平滑且完整的結構。
    ;Electrochemical deposition method was used in this study to produce three-dimensional structure parts in micron grade. We fixed distance of anode shaft and plated specimen then adjust power of the current supply and speed of triaxial positioning table gradually in order to create the smooth appearance and complete structures.
    We found that the cycle of plating bath was needs to wash bubble which generated from electrochemical reaction in plating process away from anode axis and supplied metal ions of planting bath which was consumed in electrochemical process. If the amount of cycle is less than the needs which induced too late to wash away the bubbles generated by electrochemical reactions that will make three-dimensional structures forms rough lumps.
    Because of the nonlinear of electrochemical deposition rate, the velocity of Z-axis shift cannot work with it. We fixed the output of power supply, and then adjusted the speed of movement in order to match the deposition rate and trying to strike a balance. However, there was still slight difference between the rate of electrochemical deposition and Z-axis shift. We used the vertical space of anode shaft and plated specimen to compensate for the differential rate and figured out the relevant problem.
    The objective of this study is to seek a method which could improve the quality of the plating. In this study we have already found the preliminary solution and produced some of the useful structures successfully. We can try to use this process in other manufacturing field and make mechanism miniaturize and cost down.
    Appears in Collections:[機械工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明