English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23265731      Online Users : 593
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/67422


    Title: 電磁式植牙骨整合穩固度檢測技術研究與裝置開發;An Electromagnetic Detection Technique Research and Device Development for Osseointegration Stability in Dental Implant
    Authors: 牟汝振;Mou,Ru-zhen
    Contributors: 機械工程學系
    Keywords: 牙科植體;共振頻率分析;電感磁激振;霍爾效應;莫萊小波訊號;dental implant;resonance frequency analysis;inductor magnetism excitation;Hall-effect;Morlet wavelet
    Date: 2015-04-24
    Issue Date: 2015-05-08 15:36:37 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 對於牙科植體骨整合檢測,本研究延續非接觸式電磁激振感應的方法於人工植牙手
    術後穩固度監測,檢測方式是利用交互變化的電流訊號輸入電感激振源產生交互變化的
    電磁力來激振結構,然後以線性霍爾效應感測器來量測其共振頻率。研究分成兩部分,
    第一部分介紹激振源電感的選擇基準和相關原理,以及霍爾效應感測器的原理,再說明
    電磁檢測裝置的架構,然後輸入訊號驗證電磁裝置的可行性;第二部分說明體外骨塊實
    驗設計及流程,並且與市售檢測裝置Osstell® ISQ 及電容式位移計量測植體的共振頻率
    結果作比較。
    自然頻率與結構剛性有關,同時也受到質量效應的影響,如果質量增加比剛性要多,
    則第一模態的自然頻率會下降;因此,骨塊實驗所增加緻密骨厚度將降低共振頻率,但
    是疏鬆骨的楊氏係數增加將使結構剛性變大,第一模態的共振頻率將上升。為了更接近
    臨床條件,也進行骨塊側面(頰舌方向)黏貼緻密骨實驗,此時骨塊整體剛性明顯增大,
    同時造成結構的共振頻率較難量測。研究結果顯示,所開發非接觸式電磁檢測裝置具可
    靠性,然未來仍需小型化及一體化,並進行動物實驗以確定植體骨整合檢測的實際應用
    效果。;For dental implant osseointegration detection, this study continues a non-contact
    electromagnetic excitation in artificial implant surgery stable detection. Electromagnetic (EM)
    detection is used of interactive changing current signal, which input the inductor, and produce
    an interactive electromagnetic force to excite structures. Then linear Hall-effect sensor detects
    the resonance frequency (RF) of the dental implant structure. The thesis consists of two parts.
    First, the principle of inductive excitation source, selection criteria, the principle of Hall-effect
    sensors, and the schema electromagnetic detection device are briefly introduced. Then EM
    device will be fed with Morlet wavelet to verify the feasibility of the electromagnetic device.
    The second section describes in-vitro experimental processes, and the RF results obtained from
    measurement will be compared with Osstell® ISQ, and capacitive displacement sensor.
    Natural frequency depends on stiffness, and is affected by mass. If mass increases more
    than stiffness, natural frequency of the 1st mode shape decreases. Therefore, although the
    stiffness of structural bone blocks are increased by enlarging thickness of cortical bone, the
    RFs decreased. Increasing the Young’s modulus of cencellous bone will increase the structural
    stiffness. In order to correspond the clinical condition, bone block is attached the cortical shell
    in Buccal Lingual (BL) direction, it can increase the stiffness of bone block. As the thickness
    of cortical shell increase, RF is more difficult to measure. The results show that the
    non-contact electromagnetic detection device is reliable, but still need improvement to make
    the device more compact. Moreover, in-vivo experimental of animal- tibia is required to verify
    the devices applied in clinical condition.
    Appears in Collections:[機械工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML317View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明