English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69561/69561 (100%) Visitors : 23193691      Online Users : 681

 Please use this identifier to cite or link to this item: `http://ir.lib.ncu.edu.tw/handle/987654321/67644`

 Title: 3×3矩陣乘積之數值域及數值域半徑;NUMERICAL RANGES AND NUMERICAL RADII OF PRODUCTS OF 3×3 MATRICES Authors: 林肯甫;Lin,Ken-fu Contributors: 數學系 Keywords: 數值域;數值域半徑;張量積;壓縮矩陣;numerical range;numerical radius;tensor product;contraction Date: 2015-06-29 Issue Date: 2015-07-31 00:47:20 (UTC+8) Publisher: 國立中央大學 Abstract: 在本篇論文中，對任意3×3的複數矩陣A和B，我們給出了充分且必要的條件對於AB矩陣乘積的數值域和BA矩陣乘積的數值域相等時。此外，去研究當A和A2的數值域半徑為1且A3的數值域半徑小於1時，A會有什麼樣的矩陣結構。以及最後，我們給出了充分且必要的條件對於當A為壓縮矩陣其特徵值長度皆小於1且A的範數為1，A與B張量積的數值域半徑等於A的範數與B的數值域半徑乘積時。;In this thesis, for any two 3-by-3 complex matrices A and B, we show that the necessary and suffi cient conditions for the equality W(AB) = W(BA) to hold, where W( ) denotes the numerical range of a matrix, a nd the structure of A when w(A) =w (A2) = 1 and w (A3) < 1, where w( ) denotes the numerical radius of a matrix, and obtain the necessary and suffi cient condition for the equality w(A B) = kAkw(B)to hold when A is a completely nonunitary contraction with kAk = 1, where k kdenotes the usual operator norm of a matrix. Appears in Collections: [Graduate Institute of Mathematics] Electronic Thesis & Dissertation

Files in This Item:

File Description SizeFormat
index.html0KbHTML402View/Open