English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65421/65421 (100%)
Visitors : 22302743      Online Users : 341
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/67652


    Title: 傅氏分析在組合學的應用與Roth定理;Applications of finite Fourier analysis to combinations and Roth theorem
    Authors: 廖常至;Liao,Chung-Chih
    Contributors: 數學系
    Keywords: Roth定理;傅氏分析;組合學;Roth;Fourier analysis;combinations
    Date: 2015-06-29
    Issue Date: 2015-07-31 01:03:13 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Roth 定理闡述了如果一個正整數的子集的"密度"大於0,則它包含一個長度為3的等差數列。在本篇論文,我們探討了傅氏分析在組合學上的一些運用。除此之外,利用一些基本數論的結果,我們了解如何使用傅氏分析來證明Roth 定理。
    ;The celebrated result of Roth asserts that there exists an arithmetic progression of length three in a subset in integers with positive upper density. The result has been reproved and generalized later by many people. In this thesis, we study the approaches of Fourier analysis methods. We will see that the Finite Fourier analysis is powerful enough to prove the Roth theorem.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML411View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明