English  |  正體中文  |  简体中文  |  Items with full text/Total items : 73032/73032 (100%)
Visitors : 23287812      Online Users : 445
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/68038

    Title: 以離散元素法探討加勁砂土層在淺基礎受載重下之力學;The Mechanical Behavior Of Reinforced Sand Layer Under Shallow Foundation Loading Using Discrete Element Method
    Authors: 黃忠皓;Huang,Chung-Hao
    Contributors: 土木工程學系
    Keywords: 離散元素法;平板載重試驗;地工格網;微觀;discrete element method;plate load test;microscopic;geo-grid
    Date: 2015-08-24
    Issue Date: 2015-09-23 10:13:22 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 台灣地狹人稠,都市土地之有效利用為工程師們的一大挑戰,因為台灣
    延伸無法有效於模型中觀察,所以本研究利用離散元素法,使用 PFC2D 軟
    原始建模,並於模型中鋪設地工格網進行平板加壓,再以 Sawwaf 物理試驗
    擬,再以改良的模型模擬不同的層數、格網寬度及格網位置做承載力比較。;Taiwan is located in between the boundaries of the Eurasian and Philippine
    plate, so the use of the land over the fault is a major issue. The dislocation
    provokes a deformation in the surface causing an angular distortion; it could make
    the upper side of the fault or the architectures surrounding it to get damaged,
    causing structures to collapse. We can decide to use bigger projects, preventing
    methods to reduce human and financial losses.
    The majority of previous studies take finite element methods to simulate the
    behavior of faults, and use the disadvantages of grid simulations like: particle-
    degree rotation and limited displacement, the inseparability of particles, the
    inability to detect particle contact situation, large changes can’t be simulated and
    the show up and extension of cracks can’t be observed. Therefore, this research
    uses discrete element method-PFC, simulating the dislocation of the fault after the
    overburden of the top of the fault is affected by the displacement situation of the
    bottom part’s dislocation. In the research of Liao(2013) ,the stiffness of the
    particle’s contact, shear stiffness and particle basic friction are related to the
    integral friction; the research of Sawwaf (2010) simulate Geo-grid in sand layers
    loading plant by FE and compare it to the physical experiments. This research do
    the original model by Liao′s codes and add the grid in the model to do the loaded
    plant test, then compare to Sawwaf′s laboratory model.
    The future research directions are for increasing the geo-grid in layer, and
    simulate the lower friction of angle to discuss the result of Geo-grid, and use the
    improved model to compare the bearing capacity.
    Appears in Collections:[土木工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明