English  |  正體中文  |  简体中文  |  Items with full text/Total items : 73032/73032 (100%)
Visitors : 23358078      Online Users : 561
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/68212

    Title: 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
    Authors: 黃以德;Huang,Yi-De
    Contributors: 化學工程與材料工程學系
    Keywords: 離子佈植;金屬矽化物
    Date: 2015-08-25
    Issue Date: 2015-09-23 10:53:27 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究利用自組裝奈米球微影術(Nanosphere Lithography, NSL)結合蒸鍍技術與熱
    從穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 及選區電子繞射
    (Select Area Electron Diffraction, SAED) 分析中,發現鎳金屬奈米點陣列在非晶矽基材上
    反應時,在低溫退火300 oC 時就已完全轉換成低電阻NiSi 相。與先前本實驗室研究結
    果說明由於基材有固定晶面並且最低能量考量的關係在單晶矽基材上350 oC 即生成高
    電阻NiSi2 相。此結果說明沒有固定結晶晶面的非晶矽基材能夠使高電阻NiSi2 相生成延
    基材之界面反應。結果顯示具有氮氣離子佈植非晶矽基材其NiSi 溫度窗為300-500 oC,
    較第一部分能夠延長低電阻NiSi 相熱穩定性約150 oC 之溫度差距,造成如此差異的結
    出至矽化物晶界以及矽化物與非晶矽基材界面處,降低其界面能,從而延長NiSi 相的溫
    力。;In the present study, we have demonstrated that 2D periodic arrays of nickel silicide
    nanodots can be successfully fabricate on the amorphous silicon substrates and nitrogen
    ion implanted amorphous silicon substrates by using the polystyrene nanosphere
    lithography(NSL), evaporation technique and thermal annealing process. The interfacial
    reactions of the nickel nanodots on amorphous silicon substrate after different heat
    treatments have also been investigated.
    From the TEM and SAED analysis, low resistivity NiSi nanodots were found to form
    on amorphous silicon at annealing temperature as low as 300 oC. From our earlier
    researches and other previous studies, the growth of high resistivity NiSi2 nanodots was
    found to be more favorable for the miniature size Ni metal nanodots on crystal Si
    substrates at annealing temperature as low as 350oC. The results indicated that the
    amorphous silicon exhibited significant beneficial effects on the enhanced growth of low
    resistivity NiSi and improved the stability of NiSi nanodots.
    Other studies was Ni metal dots on nitrogen ion implanted amorphous silicon
    substrate at various heat treatments. The incorporation of N2 to a-Si substrates exhibited
    excellent effects on improving the thermal stability of NiSi nanodots. The process window
    of low resistivity NiSi in the Ni nanodots/a-Si(N2
    +) sample was greatly extended by 150 oC
    as compared to that in the Ni nanodots/a-Si sample. The results indicated that the presence
    of N2 is thought to lower the NiSi nanodots/a-Si(N2
    +) interface energy and to block the Ni
    diffusion paths. Both the Ni metal nanodots on the amorphous silicon substrate and
    nitrogen ion implanted amorphous silicon substrate annealed at 900oC, highly curled and
    tangled amorphous nanowires were observed to grow from silicide nanodots regions.
    Appears in Collections:[化學工程與材料工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明