中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/68229
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70548/70548 (100%)
Visitors : 23091608      Online Users : 332
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/68229


    Title: 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
    Authors: 周韋邑;Chou,Wei-Yi
    Contributors: 化學工程與材料工程學系
    Keywords: 矽化物;奈米管;超薄矽晶圓;濕式蝕刻;轉附製程
    Date: 2015-08-26
    Issue Date: 2015-09-23 10:56:35 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究分為三個部分,第一個部分是以奈米球微影術與金屬催化化學蝕刻法製備出大面積規則有序排列之矽單晶奈米線陣列,之後以側壁鍍膜法在上面鍍製鈦金屬與非晶矽,經由高溫熱退火形成金屬矽化物奈米管陣列,並探討經由不同退火溫度之生成相為何;第二個部分是以溼式蝕刻法製備出不同晶面的超薄矽晶圓,並在其上製備出矽單晶奈米線陣列;第三個部分是關於矽單晶奈米線轉附製程之研究,藉由兩步驟蝕刻法製備出底部有多孔性結構之矽單晶奈米線陣列,之後將其轉附於已經塗有Epoxy之可撓曲軟板上,施以剪切力分開底部基材與矽單晶奈米線。
    藉由奈米球微影術與金屬催化化學蝕刻法製備出大面積之矽單晶奈米線陣列後,為了獲得更小尺寸之矽單晶奈米線,本研究以高溫熱氧化進一步縮小矽單晶奈米線之直徑,且經由穿透式電子顯微鏡鑑定後,尺寸被控制在40 nm左右,且經由掃描式電子顯微鏡分析,仍舊保持初始矽單晶奈米線陣列之排列,之後以側壁鍍膜法將鈦金屬與非晶矽鍍製於矽單晶奈米線之側壁,使鈦金屬與矽單晶奈米線進行高溫界面反應,非晶矽則是扮演阻擋外界氣氛之角色,本研究在此探討經由不同退火溫度之生成相與結構變化,以拉曼光譜儀與穿透式電子顯微鏡進行分析與鑑定。
    本研究也以金屬催化無電鍍蝕刻法製備出不同晶面之超薄矽晶圓,藉由蝕刻溫度的改變與蝕刻液濃度的調整,探討這兩種條件對於蝕刻形貌的影響,並從其中選定最佳蝕刻條件,並將此最佳蝕刻條件也應用於製備其他晶面之超薄矽晶圓,都可以在蝕刻後得到反射率與初始拋光面一樣的反射率,表示試片不僅被成功的薄化,也在薄化的同時將表面修飾為較平坦的樣貌,本研究以掃描式電子顯微鏡進行厚度鑑定及初步的形貌的觀察,以原子力顯微鏡進行詳細的表面形貌觀察,所得之表面粗糙度都遠優於同樣以溼式蝕刻法製備超薄矽晶圓之文獻,表示本研究使用之製備法是一個相當好的技術。
    最後本研究也將初始在單晶矽基材上之矽單晶奈米線轉附製可撓曲軟板上,藉由第二部蝕刻將矽單晶奈米線底部蝕刻出多孔性結構,經由穿透式電子顯微鏡很明顯的可以觀察到矽單晶奈米線底部有孔洞結構,我們推測其機制是是因第二步蝕刻使用之高濃度雙氧水蝕刻液之關係,導致此時為等向性蝕刻,而有往側壁蝕刻之現象,因此在轉附的過程可以以較小的剪切力將矽單晶奈米線與底部分開,成功的將矽單晶奈米線轉附至任意基材上。
    ;There are three parts in this study. The first is fabrication of large area single-crystalline SiNWs array by nanosphere lithography and metal-assisted chemical etching, then deposited titanium and amorphous-silicon on the SiNWs array by lateral deposition, and treated it with high temperature to form metal silicide nanotubes array, and discussed the forming phases during various temperature; the second is fabrication of various orientation of ultra-thin silicon wafer by wet etching, then fabricated single-crystalline SiNWs array on ultra-thin silicon wafer; the third part is the research about transfer of single-crystalline SiNWs array. By second etching process, the bottom of SiNWs would be etched to form porous structure, then transferred to flexible plate with epoxy, used sheer force to divide SiNWs array from silicon substrate.
    As the large area single-crystalline SiNWs array was fabricated by nanosphere lithography and metal-assisted chemical etching. In order to obtain thinner SiNWs, high temperature oxidation was applied to reducing the size of SiNWs, and the diameter was 40 nm by TEM observation, also the arrangement of SiNWs remained arrayed by SEM observation, then titanium and amorphous-silicon were deposited on the SiNWs by lateral deposition and treated it with high temperature annealing. The role of amorphous-silicon is to passivate ambience. Herein we discussed and analyzed the forming phases and structure during various temperature by Raman spectroscope and TEM respectively.
    Also in this study we fabricated different orientation of ultra-thin silicon wafer by metal-assisted electroless etching process, and discussed the influence during various temperature and concentration of etching solution, choosen the best condition to fabricate ultra-thin silicon wafer, and the condition is also suitable for other orientation silicon wafer from transmittance. It means that the etching process not only thinned the silicon wafer successfully but also modified the surface of silicon wafer. In this study, SEM was applied to observing the thickness and surface of ultra-thin silicon wafer, AFM was applied to analyzing the surface structure detailedly, the surface roughness of different orientation ultra-thin silicon wafer is better than the reference using wet etching process. So the process applied to fabricating ultra-thin silicon wafer in this study is an excellent method.
    At the last of this study, SiNWs array was transferred to flexible plate by second etching process, the bottom of SiNWs would form porous structure by TEM observation, and we guess the forming mechanism is isotropic etching during second etching process in high concentration H2O2 of etching solution, so the bottom of SiNWs would be etched latterly. As the SiNWs array was divided from silicon substrate, we can use less sheer force to transfer the SiNWs array on the flexible plate.
    Appears in Collections:[National Central University Department of Chemical & Materials Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML550View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明