English  |  正體中文  |  简体中文  |  Items with full text/Total items : 74010/74010 (100%)
Visitors : 24681577      Online Users : 294
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/68567

    Title: 使用最大概似估計法探討有母數擴充風險模型;Maximum likelihood estimation for parametric extended hazard model
    Authors: 陳怡瑄;Chen,I-Hsuan
    Contributors: 統計研究所
    Keywords: 存活資訊;擴充風險模型;概似比檢定;Survival;Extended hazard model;Likelihood ratio test
    Date: 2015-07-21
    Issue Date: 2015-09-23 12:37:54 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 半母數存活模型在聯合模型中扮演著很重要的角
    但是推導標準差時通常是透過拔靴法(bootstrap method)
    訊(Fisher informatione) 有效率的得到標準差。在參數估
    Gamma 以及Log-normal 四個分配。本篇使用最大概似
    AIC 值與概似比統計量(likelihood ratio statistic)。由於擴
    充風險模型為Cox 模型與AFT 模型之廣義模型,本篇將
    擴充風險模型視為完整模型,將Cox 與AFT 模型視為簡
    約模型,因此概似比檢定可以幫助我們透過巢狀結構去做模型選擇,選擇AFT 模型或是Cox 模型。;So far, in joint model approaches, semi-parametric survival
    model has been played an important role for modelling
    event time data. Although many approaches have been proposed,
    the estimation encounters difficulties in deriving standard
    error estimates through bootstrap method, which is extremely
    time consuming. Therefore, to complement the literature,
    we employ parametric survival model for the joint
    model with standard error estimates obtained from Fisher information.
    The estimation of parametric joint model is dramatically
    faster than that of semiparametric one and thus is
    feasible for practical application. We assume four common
    parametric distributions in survival analysis, Weibull, Loglogistic,
    Log-normal, and Gamma distribution. We use the
    maximum likelihood approach to estimate parameter and to
    calculate AIC value, and likelihood ratio statistic to do model
    selection. Since the extended hazard model is the generalized model for Cox model and AFT model, we regard the extended
    hazard model as the full model. Also, we consider Cox model
    and AFT model as reduced model. Therefore, LRT can be
    conducted to do model selection through nested structure.
    Appears in Collections:[統計研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明