English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75369/75369 (100%)
Visitors : 25465332      Online Users : 279
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/68592

    Title: Asset Allocation Based on the Black-Litterman and GARCH Models
    Authors: 林煒紘;Lin,Wei-hung
    Contributors: 統計研究所
    Keywords: 馬科維茨;Black-Litterman;GARCH;EGARCH;Markowitz;Black-Litterman;GARCH;EGARCH
    Date: 2015-07-29
    Issue Date: 2015-09-23 12:53:08 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 雖然Markowitz 模型在實務上是可用的,但是它仍存在許多缺點,尤其是在估計最適權重時,常會因為參數過度敏感的問題而導致嚴重的估計誤差產生。為了解決這個估計誤差的問題,我們使用Black-Litterman model,藉由它將市場隱含報酬率與投資人的觀點做聯結去修正預期報酬率,此外為了能更準確刻畫投資人之觀點誤差我們也將標準的Black-Litterman model 模型結合不同之GARCH 模型去估計隨時間變化的共變異數矩陣。最後,我們利用台灣股票市場中的五檔產業指數提供了一些實證分析。;Asset allocation using Markowitz model has many disadvantages, particularly because the optimal weight is sensitive to the estimation error of the model. To overcome the problem of estimation error, we follow Black-Litterman model, where the initial expected returns are linked to market implied return and subjective views of investor for each asset to adjust the expect return. To adjust the heteroscedasticity of the volatility, we further combine the standard Black-Litterman model with several GARCH-typed models to estimate time-varying covariance matrix. Finally, we conduct an empirical analysis using five industry indexes in Taiwan stock market.
    Appears in Collections:[統計研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明