English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65421/65421 (100%)
Visitors : 22282412      Online Users : 167
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/68613


    Title: A class of Liu-type estimators based on ridge regression under multicollinearity with an application to mixture experiments
    Authors: 陳愛群;Chen,Ai-Chun
    Contributors: 統計研究所
    Keywords: 均方差;共線性;Ridge回歸方法;Shrinkage估計量;Mean squared error;Multicollinearity;Ridge regression;Shrinkage estimator
    Date: 2015-07-30
    Issue Date: 2015-09-23 12:55:14 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 線性回歸中,在共線性問題發生的情況下,常見的最小平方估計量表現得並不理想。這類問題發生在混合實驗 ( mixture experiments ) 中,原因是此種實驗對自變數 ( regressors ) 的數學限制式所導致的。Hoerl和Kennard在1970年提出了ridge 回歸方法的概念,解決了最小平方估計量在共線性問題下的缺陷。近來,ridge回歸方法也成功地應用在混合實驗中。然而,混合實驗通常會將截距項合併至自變數的係數之中,若我們在線性模型中保有截距項並對自變數做標準化的話,ridge回歸方法的應用將變得比較複雜。此篇論文考慮了一種特殊的劉氏估計量( Liu-type estimators ),並保有模型中的截距項。我們推導新估計量的均方差( mean squared error )函式並且透過統計模擬來比較新估計量和既有的ridge估計量。最後,我們用兩組實驗的資料來說明新估計量的表現。;In the linear regression, the least square estimator does not perform well in terms of mean squared error when multicollinearity exists. The problem of multicollinearity occurs in industrial mixture experiments, where regressors are constrained.Hoerl and Kennard (1970) proposed the ordinary ridge estimator to overcome the problem of the least squared estimator under multicollinearity. Recently, the ridge regression is successfully applied to mixture experiments. However, the application of ridge becomes difficult if the linear model has the intercept term and the regressors are standardized as occurring in mixture experiments. This paper considers a special class of Liu-type estimators (Liu, 2003) with intercept. We derive the theoretical formula of the mean squared error for the proposed method. We perform simulations to compare the proposed estimator with the ridge estimator in terms of mean squared error. We demonstrate this special class using the dataset on Portland cement with mixture experiment (Woods et al., 1932).
    Appears in Collections:[統計研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML430View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明