English  |  正體中文  |  简体中文  |  Items with full text/Total items : 73032/73032 (100%)
Visitors : 23358247      Online Users : 566
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/68643

    Title: Wi-Fi室內定位使用粒子群演算法;Wi-Fi Indoor Positioning System Using Particle Swarm Optimization
    Authors: 余宗鴻;Yu,Tsung-hung
    Contributors: 通訊工程學系在職專班
    Keywords: 室內定位;K個最近鄰居演算法;K分群演算法;粒子群演算法;Indoor positioning system;K Nearest Neighbor algorithm;K-means clustering algorithms;Particle Swarm Optimization
    Date: 2015-08-19
    Issue Date: 2015-09-23 13:57:07 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本篇論文主要利用WiFi AP的訊號強度來進行室內定位,首先透過擷取無線接取點(Wi-Fi Access Point) 內的接收訊號強度(Received Signal Strength Indicator, RSSI)來建構出離線地圖,接下來於線上定位階段正確地取得各個無線接取點(Wi-Fi Access Point)內信標框(beacon frame)的相關資訊,並將接收到的訊號強度轉換成位置資訊;利用各種適用於定位系統的演算法(K個最近鄰居演算法、K分群演算法、粒子群優化演算法)進行室內定位,透過比較這些演算法我們可以發現,本篇論文所使用的粒子群優化演算法(Particle Swarm Optimization,PSO)應用於定位系統上可以達到較高的定位精準度與收斂速度。
    ;This thesis is mainly to use the Wi-Fi access points signal strength for indoor positioning. i.e. Received Signal Strength Indicator measurements from multiple Wi-Fi access points. During an offline phase, fingerprints are collected at known positions in the building. This database of locations and the associated fingerprints are called the radio map. During an online phase, the current Wi-Fi fingerprint Particle Swarm optimization are compared with those of the radio map. This paper compared different algorithm, such as K Nearest Neighbor algorithm, K-means clustering algorithms, Particle Swarm Optimization, we can find the Particle Swarm Optimization algorithm on the indoor positioning system can achieve high positioning accuracy and convergence speed.
    This simulation results showed the proposed Particle Swarm Optimization algorithm, the average location error better than others, the median error of 1m, the maximum positioning error in 1.5M, it means Particle Swarm Optimization algorithm more suitable for indoor positioning and smart handheld devices.
    Appears in Collections:[通訊工程學系碩士在職專班 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明