English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23247904      Online Users : 368
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/68861


    Title: Numerical ranges and numerical radii for tensor products of matrices
    Authors: 呂岳樺;Lu,Yue-hua
    Contributors: 數學系
    Keywords: 數值域;數值半徑;張量積;S_n矩陣;收縮;友矩陣;numerical range;numerical radius;tensor product;S_n-matrix;contraction;companion matrix
    Date: 2015-07-07
    Issue Date: 2015-09-23 14:45:32 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在這篇論文中,我們主要討論具備怎樣性質的n×n矩陣A與m×m矩陣B能讓這個等式"w(A\otimes B)=" ‖A‖w(B)成立,其中w(∙)及‖∙‖分別代表一個矩陣的數值半徑(numerical radius)及範數(norm)。我們證明了以下結果:(1)假如A是一個S_n矩陣,則"w(A\otimesB)=" w(B)的充分必要條件是B的數值域(numerical range)是個圓心在原點的圓盤並且k_B≤n,其中k_B這個參數指的是在B的壓縮矩陣中數值域與B相同,這種壓縮矩陣尺寸的最小值;以及(2)若A是個範數為1的completely nonunitary矩陣,而m×m矩陣B滿足k_B=m,則"w(A\otimes B)=" w(B)的充分必要條件是B的數值域是個圓心在原點的圓盤並且k_B≤p_A+1,其中p_A這個參數指的是讓‖A^k ‖=‖A‖^k成立,所有k的最大值。在上述的情況下,我們都得到"A\otimes B" 的數值域與B的數值域相同。接下來,我們也對友矩陣(companion matrix)作一些討論,我們證明:若A是一個n×n的友矩陣,則"W(A\otimes A)" 是個圓心在原點的圓盤的充分必要條件是A是一個n×n的Jordan block J_n.;In this thesis, we characterize matrices A in M_n and B in M_m which yield the equality w(A\otimes B)=\|A\|w(B), where w( .) and \|.\| denote, respectively, the numerical radius and the operator norm of a matrix. We show that (1) if A is an Sn-matrix, then w(A\otimes B)=w(B) if and only if the numerical range W(B) of B is a circular disc
    centered at the origin and k_B\leq n, where
    k_B=min{k:W(V* BV)=W(B) for some V in M_mk with V* V=I_k};
    and (2) if A is completely nonunitary with \|A\|=1 and k_B =m, then w(A\otimes B)=w(B) if and only if W(B) is a circular disc centered at the origin and k_B\leq pA+1,
    where p_A=sup{k:\|A\|^k=\|A^k\|}
    In the above cases, we all have W(A\otimes B)=W(B). Next, we consider the class
    of companion matrices. We prove that if A is an n-by-n companion matrix, then
    W(A\otimes A) is a circular disc centered at the origin if and only if A is equal to the
    n-by-n Jordan block J_n.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML349View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明