English  |  正體中文  |  简体中文  |  Items with full text/Total items : 73032/73032 (100%)
Visitors : 23387993      Online Users : 486
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/69008

    Title: 金屬芯印刷電路板設計對高功率發光二極體的散熱影響
    Authors: 吳昆財;Wu,Kun-Tsai
    Contributors: 機械工程學系在職專班
    Keywords: 發光二極體;接面溫度;熱阻值;電路板的導熱銅箔層設計;熱電耦合設計;延伸面積設計;light-emitting diodes;junction temperature;thermal resistance;copper foil layer design of Printed Circuit Board;thermoelectric coupling design;extended area design
    Date: 2015-08-06
    Issue Date: 2015-09-23 14:52:50 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 目前發光二極體在固態照明上的應用越來越廣,可以應用在室內照明、戶外照明、背光源、汽車照明、交通號誌燈及其它產業等。當LED的應用趨勢愈普及化,意味著LED的效率正在逐步提升當中。由於LED的輸入功率只有30%轉換成光,70%轉換成熱,因此,LED熱管理的問題更受到重視。若想要降低LED的接面溫度與熱阻值,其中最重要的一項是電路板的導熱銅箔層設計。
    本研究最主要的目的是設計一款最佳化的金屬芯印刷電路板,可以降低來自於晶片的熱。使用散熱模擬分析、散熱實驗,對金屬芯印刷電路板散熱性能做探討。透過SolidWorks Flow Simulation軟體的分析與實驗結果的比對,要先確認分析的合理性,再尋找散熱解決對策。
    ;The light-emitting diodes (LED) in the application of solid-state lighting is interested. LEDs one can be used as indoor lighting, outdoor lighting, backlighting, daytime running light, traffic light and the other industries, etc.. When the trend of the increasing popularity of LED applications, the efficiency of LED has also been increased gradually. Due to only 30% of the input power been converted to light and nearly 70% been converted to heat. The thermal management issue of the LEDs become important and crucial. To reduce the junction temperature and thermal resistance, one important issue is copper foil layer design of Printed Circuit Board.
    The main purpose of this study is to design an optimizing Metal Core Printed Circuit Board in order to reduce the heat from the chipset. This work investigates the cooling ability of the MCPCB by thermal simulation analysis and thermal experiments of LED. This study uses commercial software, SolidWorks Flow Simulation, to analyze the temperature field and the results are compared with experimental data to verify the simulation analysis.
    Six different copper foil design of MCPCB were compared. The junction temperature and thermal resistance, were used to evaluate the thermal performance on high power LED module in this study. From the thermal simulation analysis and thermal experiments results, the LED module showed a minimum junction temperature and thermal resistance at about 65.73°C and 17.21°C/W due to the thermoelectric coupling design and extended area design of the copper foil layer in Type-3. According to the simulation results and temperature measurement, we can make sure that the substrate geometry has directly effects on the junction temperature and thermal resistance of an LED.
    Appears in Collections:[機械工程學系碩士在職專班 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明