English  |  正體中文  |  简体中文  |  Items with full text/Total items : 74010/74010 (100%)
Visitors : 24626238      Online Users : 468
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/69101

    Title: 低揮發性有機化合物競爭揮發之研究;Competition volatilization of low volatility organic compound
    Authors: 陳薏安;Chen,Yi-An
    Contributors: 環境工程研究所
    Keywords: 亨利常數;揮發速率;質傳係數
    Date: 2015-07-20
    Issue Date: 2015-09-23 15:28:53 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究根據文獻,選用低亨利常數有機化合物作為研究標的,主要探討內容為,觀察此類化合物之揮發速率、比較有機化合物間質傳係數( KOL )於不同環境條件下之差異,及同類型之有機化合物同時存於水中時是否會發生揮發競爭的現象,另外也加以探討化合物特性及官能基於不同環境條件下,質傳係數( KOL )之變化。本研究以半密閉系統之模廠,在不同氣、液擾流下,測量低亨利常數有機化合物之質傳係數(KOL),再將所得之結果,比較化合物間揮發速率的差異。
    ;In this study, we discussed about low Henry’s constant of organic compounds. The goal of this research is to determine the volatilization rate of such compounds and to campare the mass transfer coefficient (KOL) between organic compounds in different environmental conditions.In this study we also explored the KOL of a characteristic compared at same condition both in water and organic madia . In this research, we measured the KOL value of low Henry’s constant of organic compounds with a semi-closed system of the model factory concept under different gas and liquid turbulence, and the results obtained are used to compare the rate of volatilization of organic compounds.
    The results showed that low Henry’s constant of organic compounds which we selected can meet the first-order kinetic, and the resulting volatilization rate constants (k) are used to calculate the KOL value by mass balance reaction. The obtained results can be found, the low Henry’s constant of organic compounds and KOL are positive relationship, and it will increase with increasing the intensity of turbulence. When Henry’s constant value are similar, the volatilization rate of organic compounds was vaired depending on different physical and chemical properties. Finally, we put the same type of organic chemical in the water and found that the compounds interfere with each other, then the phenomenon of competition is generated.
    Appears in Collections:[環境工程研究所 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明