近幾年來,由於生物科技一日千里,並且搭配成熟的微系統加工技術,使得生物晶片的研究蔚為風潮。目前應用在生物晶片上的訊號偵測方法有許多種,例如:螢光檢測法和電位量測法等,本文主要探討的是螢光檢測法,利用消逝波的激發方式激發螢光,進而整合微透鏡和微光柵成一微光學系統,用來調制螢光光源,而促成整個生物晶片檢測系統。 本文模擬主要針對微光學元件設計和混光分析做討論,微透鏡設計概念為先定義系統所需照度分佈結果,再藉由結果反推透鏡形式,本文所設計的非球面平凸透鏡發散角為0.5、規一化照度分佈為0.92以上。微光柵結構設計成循環比為50﹪、相位深度為π,目的讓有分光效果的一階繞射效率提升為40.5﹪。混光分析利用混合頻譜訊號,反推算出組成此混合頻譜訊號的不同頻譜訊號所佔的總能量比。 本文製程主要利用壓模方式製作微透鏡,文中將針對模具製作、灌模和量測系統做詳細介紹,本文所製作的非球面平凸透鏡發散角為7.1、規一化照度分佈為近似高斯分佈。 Recently, according to the great progress in biotechnology and the miniaturization techniques in engineering, the development on the technology of lab on a chip becomes one of the most important subjects for the multi-discipline integration. There are many signal detection methods applied on the biochip, such as the fluorescence detection method and the potentiometric detection method etc. Here, this study focus on the fluorescence detection method and utilize the evanescent wave to excite the fluorescence, then use micro-lens and micro-grating to modulate the fluorescent light source and promote the detective system of the biochip. The lens design focuses on the planoaspherical lens. This lens can be used to generate a homogenous irradiance on the target in the grating, which uses the fluorescent light as light source. The grating design focuses on the binary phase grating. As the binary structures are based on π-phase depth and 50﹪-duty cycle, diffraction efficiency of the binary approximation is only 40.5﹪in the +1 diffraction order. Templates with inverse images of the planoaspherical lens using casting techniques. The image of microstructures are then transferred from templates to quartz.