English  |  正體中文  |  简体中文  |  Items with full text/Total items : 74010/74010 (100%)
Visitors : 24620008      Online Users : 380
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/69265

    Title: 台灣藍鵲與藍腹鷴羽毛結構色之光學模型;Optical Model for Structural Color of Feathers of Taiwan Blue Magpie and Swinhoe’s Pheasant
    Authors: 廖詩芳;Liao,Shih-Fang
    Contributors: 光電科學與工程學系
    Keywords: 結構色;光子晶體;嚴格耦合波分析法;二維傅氏分析;準有序奈米結構;structural color;photonic crystal;rigorous coupled-wave analysis (RCWA);two-dimensional Fourier analysis;quasi-ordered nanostructure
    Date: 2015-12-21
    Issue Date: 2016-01-05 17:47:24 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 地球上有許多具富麗色彩的物種;其中鳥類的羽毛富有最多樣以及美麗的色彩。羽毛的顏色對鳥類而言更是扮演許多重要的角色,包括增強羽毛硬度、保護羽毛避免細菌的侵蝕、調節體溫、隱匿、展示自我以及偽裝的功能。此外,顏色的品質也是鳥隻營養狀況的指標之一;由羽支內的結構所產生的結構色,較色素色更能在吸引配偶以及同性間的競爭方面造成影響。特別是雄鳥身上的紫外光結構色,更為雌鳥所吸引。因此,在此研究中,我們試圖去了解鳥類羽毛中,產生藍紫結構色的物理機制,並建立其對應的數學模型。
    本論文成功地為分別來自羽支與小羽支內部奈米結構,所產生兩種不同的虹彩色,提供兩種光學模型來闡述其光學特性。;There is a great diversity of species on the earth; among them birds have the amazing and multiple colors, especially on their plumage. The colors of feathers play several important roles for birds, such as hardness of feather enhancement, protection from the erosion of feather by bacteria, thermoregulation, concealment, advertisement, and disguise. In addition, color can serve as an indicator of nutrition condition of birds. As a result, color is also a criterion of mate choice and competition to others of the same sex, especially for structural color. Particularly, there are high associations between ultra-violet color and courtship display. Therefore, in this research, we have explained the physical mechanism of the structural blue-violet coloration in birds’ feathers and build the corresponding mathematical models.
    Blue feathers of two endemic avian species in Taiwan are chosen in this study, Swinhoe’s pheasant (Lophura swinhoii), and Taiwan blue magpie (Urocissa caerulea). A range of iridescent color appearances are presented by male Swinhoe’s pheasants’ mantle feathers. Two distinct regions of the open pennaceous portion of its feathers display particularly conspicuous angle-dependent reflection. A bright blue band appears in one region at normal incidence that spatially shifts to another at higher illumination angles. The two-dimensional photonic crystal-like nanostructures, melanin rods, inside the barbules of these two regions are similar. However, this study found that the spatial variation in their color appearance results from a continuously changing orientation of barbules with respect to the alignment of their associated barb. A multi-layered rigorous coupled-wave analysis approach was used to model the reflections from the identified intra-barbule structures. Well matched simulated and measured reflectance spectra, at both normal and oblique incidence, support our elucidation of the origin of the bird’s distinctive feather color appearance.
    Different to the conspicuous iridescence in Swinhoe’s pheasant’s mantle feather, the iridescence of the blue feathers of the Taiwan blue magpie is not obvious when the viewing angle is less than 40-degree. In addition, the biomaterial, medullary keratin, producing the blue color of Taiwan blue magpie exists inside the barbs rather than barbules. The spongy medullary keratin inside the feather barbs is investigated by two-dimensional Fourier analysis of transmission electron microscopic images of various positions on a barb to explain this unique characteristic. The orientation of the quasi-ordered nanostructure varies depending on its position of the feather barb. The predicted reflectance increases with the distance of the nanostructures from the vertex of the feather barb, and this results agrees closely with measurements.
    This research provides two optical models to elucidate two different iridescent colorations from nanostructures in barbs and barbules of bird’s feathers successfully.
    Appears in Collections:[光電科學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明