English  |  正體中文  |  简体中文  |  Items with full text/Total items : 73032/73032 (100%)
Visitors : 23028262      Online Users : 488
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/69272

    Title: 利用銦錫氧化物設計太陽能電池之電極對轉換效率之效益
    Authors: 李俊宏;Lee,Jyun-hong
    Contributors: 能源工程研究所
    Keywords: 太陽能電池;特徵接觸電阻;銦錫氧化物;電極設計
    Date: 2015-12-04
    Issue Date: 2016-01-05 18:07:04 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 聚光型太陽能電池系統(CPV),通常選用高光電轉換效率的三五族太陽能電池,搭配高聚光倍率的光學元件,使系統能產出更多電力,若能使太陽能電池轉換效率或聚光能力提高,將獲得更高單位能量密度,利於再生能源發展。
    ;Concentrating photovoltaics systems usually choose III-V compound materials as the solar cells because of the high efficiency. Using the optical component with the high concentration ratio, we can obtain much more power from the system. If we are able to increase the efficiency of solar cell or lower down the manufacturing cost, it will be very helpful for the development of renewable-energy technology.
    In this thesis, we have used the indium tin oxide (ITO) film to replace the metal as the electrode of a single-junction solar cell, on account of ITO’s high transmission in visible light spectrum and conductive ability. We have designed different kinds of electrode patterns and classified as two types: (1) electrode with only ITO film, (2) electrode with auxiliary metal pads beneath the ITO film. By means of the standard semiconductor process, we have made samples for the experiment of transmission line model (TLM). The temperature and the time of thermal process were varied to find out the structure of the metal pads with lowest specific contact resistance. The best result was derived by stacking AuGe(25nm)/Ni(15nm)/Au(70nm) with the thermal anneal of 400℃for 60 seconds, and the specific contact resistance was 3.33×〖10〗^(-6) Ω-〖cm〗^2. Then We transferred this structure into a solar cell and compared it to the ITO-only electrode. The best efficiency of solar cell with the ITO-only electrode was measured as 8.46%, which was about 11% lower than that of a commercial cell. If some fabrication issues, such as the discontinuous ITO film, can be solved, the III-V solar cell with the ITO-only electrode proposed herein will not only have the advantages of low cost and simple processing but also have the highly improved efficiency.
    Appears in Collections:[能源工程研究所 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明